果蝇视叶发育研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent Advances on the Development of Drosophila Optic Lobe
  • 作者:胡赞波
  • 英文作者:HU Zan-bo;College of Biology,Hunan University;
  • 关键词:果蝇 ; 视叶 ; 神经板 ; 脑髓神经节 ; 视觉小叶复合体
  • 英文关键词:Drosophila;;optic lobe;;lamina;;medulla;;lobula complex
  • 中文刊名:湖南师范大学自然科学学报
  • 英文刊名:Journal of Natural Science of Hunan Normal University
  • 机构:湖南大学生物学院;
  • 出版日期:2019-04-23 14:22
  • 出版单位:湖南师范大学自然科学学报
  • 年:2019
  • 期:02
  • 语种:中文;
  • 页:35-40+45+99
  • 页数:8
  • CN:43-1542/N
  • ISSN:2096-5281
  • 分类号:Q42
摘要
果蝇的视觉系统是一个多层结构,外部由复眼组成,内部由神经板、脑髓神经节和视觉小叶复合体组成,其中视觉小叶复合体又包括视觉小叶和视觉小叶板两个神经节。光感受器细胞感知视觉信号,这种信号通过神经板、脑髓神经节、视觉小叶和视觉小叶板的加工处理最后到达中脑的各个部分。视叶的发育受到增殖和凋亡的影响。本文针对影响脑髓神经节成神经细胞分化的因素、脑髓神经节的时空模式、神经板的发育过程、胶质细胞对神经板的影响、转录因子对视觉小叶板发育的影响等方面的进展进行阐述。
        The visual system of Drosophila is a multi-layered structure consisting of a compound eye made from three ganglia of the optic lobes: lamina,medulla and lobula complex. The last part includes two ganglia,lobula and lobula plate. Photoreceptor cells perceive visual signals,which are processed through the lamina,medulla,lobula,and lobula plate,and finally reach various parts of the central brain. The development of optic lobes is affected by proliferation and apoptosis. This review focuses on the following topics: the generation of medulla,the factors affecting the differentiation of medulla into neurons,the temporal pattern of medulla,the development of lamina,the influence of glial cells on the lamina,and transcription factor on the lobula plate.
引文
[1] NERIEC N,DESPLAN C. From the eye to the brain:development of the Drosophila visual system[J]. Curr Top Dev Biol,2016,116(3):247-271.
    [2] HASEGAWA E,KITADA Y,KAIDO M,et al. Concentric zones,cell migration and neuronal circuits in the Drosophila visual center[J]. Development,2011,138(5):983-993.
    [3] SATO M,SUZUKI T,NAKAI Y. Waves of differentiation in the fly visual system[J]. Dev Biol,2013,380(1):1-11.
    [4] HADJIECONOMOU D,TIMOFEEV K,SALECKER I. A step-by-step guide to visual circuit assembly in Drosophila[J]. Curr Opin Neurobiol,2011,21(1):76-84.
    [5] FERNANDES V M,CHEN Z,ROSSI A M,et al. Glia relay differentiation cues to coordinate neuronal development in Drosophila[J]. Science,2017,357(6354):886-891.
    [6] ERCLIK T,LI X,COURGEON M,et al. Integration of temporal and spatial patterning generates neural diversity[J]. Nature,2017,541(7637):365-370.
    [7] TAKEMURA S Y,NERN A,CHKLOVSKII D B,et al. The comprehensive connectome of a neural substrate for‘ON’motion detection in Drosophila[J]. e Life,2017,3(6):1-16.
    [8] BORST A,HELMSTAEDTER M. Common circuit design in fly and mammalian motion vision[J]. Nat Neurosci,2015,18(8):1067-1076.
    [9] YOUNOSSI-HARTENSTEIN A,NASSIF C,GREEN P,et al. Early neurogenesis of the Drosophila brain[J]. J Comp Neurol,1996,370(3):313-329.
    [10] APITZ H,SALECKER I. A region-specific neurogenesis mode requires migratory progenitors in the Drosophila visual system[J]. Nat Neurosci,2015,18(1):46-55.
    [11] LI X,ERCLIK T,BERTET C,et al. Temporal patterning of Drosophila medulla neuroblasts controls neural fates[J]. Nature,2013,498(7455):456-62.
    [12] HAKES A E,OTSUKI L,BRAND A H. A newly discovered neural stem cell population is generated by the optic lobe neuroepithelium during embryogenesis in Drosophila melanogaster[J]. Development,2018,145(18):1-7.
    [13] HARA Y,SUDO T,TOGANE Y,et al. Cell death in neural precursor cells and neurons before neurite formation prevents the emergence of abnormal neural structures in the Drosophila optic lobe[J]. Dev Biol,2018,27(1):16-22.
    [14] TOGANE Y,AYUKAWA R,HARA Y,et al. Spatio-temporal pattern of programmed cell death in the developing Drosophila optic lobe[J]. Dev Growth Differ,2012,54(4):503-518.
    [15] AKAGAWA H,HARA Y,TOGANE Y,et al. The role of the effector caspases dr ICE and dcp-1 for cell death and corpse clearance in the developing optic lobe in Drosophila[J]. Dev Biol,2015,404(2):61-75.
    [16] SUZUKI T,HASEGAWA E,NAKAI Y,et al. Formation of neuronal circuits by interactions between neuronal populations derived from different origins in the Drosophila visual center[J]. Cell Rep,2016,15(3):499-509.
    [17] BERTET C,LI X,ERCLIK T,et al. Temporal patterning of neuroblasts controls Notch-mediated cell survival through regulation of Hid or Reaper[J]. Cell,2014,158(5):1173-1186.
    [18] CHEN Z,DEL VALLE RODRIGUEZ A,LI X,et al. A unique class of neural progenitors in the Drosophila optic lobe generates both migrating neurons and glia[J]. Cell Rep,2016,15(4):774-786.
    [19] TAKEMURA S,LU Z,MEINERZHAGEN I A. Synaptic circuits of the Drosophila optic lobe:the input terminals to the medulla[J]. J Comp Neurol,2008,509(5):493-513.
    [20] REIFF D F,PLETT J,MANK M,et al. Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila[J]. Nat Neurosci,2010,13(8):973-978.
    [21] WANG W,LI Y,ZHOU L,et al. Role of JAK/STAT signaling in neuroepithelial stem cell maintenance and proliferation in the Drosophila optic lobe[J]. Biochem Biophys Res Commun,2011,410(4):714-720.
    [22] ORIHARA-ONO M,TORIYA M,NAKAO K,et al. Downregulation of Notch mediates the seamless transition of individual Drosophila neuroepithelial progenitors into optic medullar neuroblasts during prolonged G1[J]. Dev Biol,2011,351(1):163-175.
    [23] WANG W,LIU W,WANG Y,et al. Notch signaling regulates neuroepithelial stem cell maintenance and neuroblast formation in Drosophila optic lobe development[J]. Dev Biol,2011,350(2):414-428.
    [24] ZHOU L,LUO H. Replication protein A links cell cycle progression and the onset of neurogenesis in Drosophila optic lobe development[J]. J Neurosci,2013,33(7):2873-2888.
    [25] REDDY B,RAUSKOLB C,IRVINE K D. Influence of Fat-Hippo and Notch signaling on the proliferation and differentiation of Drosophila optic neuroepithelia[J]. Development,2010,137(14):2397-2408.
    [26] YASUGI T,SUGIE A,UMETSU D,et al. Coordinated sequential action of EGFR and Notch signaling pathways regulates proneural wave progression in the Drosophila optic lobe[J]. Development,2010,137(19):3193-3203.
    [27] DILLARD C,NARBONNEREVEAU K,FOPPOLO S,et al. Two distinct mechanisms silence chinmo in Drosophila neuroblasts and neuroepithelial cells to limit their self-renewal[J]. Development,2017,145(2):1-13.
    [28] LANET E,GOULD A,MAURANGE CEDRIC. Protection of neuronal diversity at the expense of neuronal numbers during nutrient restriction in the Drosophila visual system[J]. Cell Rep,2013,3(3):587-594.
    [29] SATO M,SUZUKI T,NAKAI Y. Waves of differentiation in the fly visual system[J]. Dev Biol,2013,380(1):1-11.
    [30] YASUGI T,NISHIMURA T. Temporal regulation of the generation of neuronal diversity in Drosophila[J]. Dev Growth Differ,2016,58(1):73-87.
    [31] KOHWI M,DOE C Q. Temporal fate specification and neural progenitor competence during development[J]. Nat Rev Neurosci,2013,14(12):823-838.
    [32] LI X,ERCLIK T,BERTET C,et al. Temporal patterning of Drosophila medulla neuroblasts controls neural fates[J]. Nature,2013,498(7455):456-462.
    [33] SUZUKI T,KAIDO M,TAKAYAMA R,et al. A temporal mechanism that produces neuronal diversity in the Drosophila,visual center[J]. Dev Biol,2013,380(1):12-24.
    [34] HASEGAWA E,KITADA Y,KAIDO M,et al. Concentric zones,cell migration and neuronal circuits in the Drosophila visual center[J]. Development,2011,138(5):983-993.
    [35] ERCLIK T,LI X,COURGEON M,et al. Integration of temporal and spatial patterning generates neural diversity[J]. Nature,2017,541(7637):365-370.
    [36] CRISTINA P,LOPES C S,CASARES F. A conserved transcriptional network regulates lamina development in the Drosophila visual system[J]. Development,2014,141(14):2838-2847.
    [37] YOGEV S,SCHEJTER E D,SHILO B Z. Polarized secretion of Drosophila EGFR ligand from photoreceptor neurons is controlled by ER localization of the ligand-processing machinery[J]. Plos Biol,2010,8(10):e1000505.
    [38] MELNATTUR K V,LEE C H. Visual circuit assembly in Drosophila[J]. Dev Neurobiol,2011,71(12):1286-1296.
    [39] CHANG Y C,TSAO C K,SUN Y H. Temporal and spatial order of photoreceptor and glia projections into optic lobe in Drosophila[J]. Sci Rep,2018,8:12669.
    [40] NGO K T,ANDRADE I,HARTENSTEIN V. Spatio-temporal pattern of neuronal differentiation in the Drosophila visual system:A user's guide to the dynamic morphology of the developing optic lobe[J]. Dev Biol,2017,428(1):1-24.
    [41] PINTO-TEIXEIRA F,KOO C,ROSSI A M,et al. Development of concurrent retinotopic maps in the fly motion detection circuit[J]. Cell,2018,173(2):485-498.
    [42] APITZ H,SALECKER I. Retinal determination genes coordinate neuroepithelial specification and neurogenesis modes in the Drosophila optic lobe[J]. Development,2016,143(13):2431-2442.
    [43] MAUSS A,PANKOVA K,ARENZ A,et al. Neural circuit to integrate opposing motions in the visual field[J]. Cell,2015,162(2):351-362.
    [44] MAISAK M S,HAAG J,AMMER G,et al. A directional tuning map of Drosophila elementary motion detectors[J]. Nature,2013,500(7461):212-216.
    [45] FISHER Y E,SILIES M,CLANDININ T R. Orientation selectivity sharpens motion detection in Drosophila[J]. Neuron,2015,88(2):390-402.
    [46] MAUSS A S,MEIER M,SERBE E,et al. Optogenetic and pharmacologic dissection of feedforward inhibition in Drosophila motion vision[J]. J Neurosci,2014,34(6):2254-2263.
    [47] CONTRERAS E G,PALOMINOS T,GLAVIC A,et al. The transcription factor Sox D controls neuronal guidance in the Drosophila visual system[J]. Sci Rep,2018,8:13332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700