过冷水中单个蒸汽气泡凝结动力学过程研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation on Condensation Dynamics of Single Vapor Bubble in Subcooled Water
  • 作者:刘洪里 ; 唐继国 ; 刘洪涛 ; 杜敏 ; 鲍静静 ; 孙立成
  • 英文作者:LIU Hongli;TANG Jiguo;LIU Hongtao;DU Min;BAO Jingjing;SUN Licheng;State Key Laboratory of Hydraulics and Mountain River Engineering,College of Water Resource & Hydropower, Sichuan University;
  • 关键词:气泡动力学 ; 凝结换热 ; 敏感性分析
  • 英文关键词:bubble dynamics;;condensation heat transfer;;sensitivity analysis
  • 中文刊名:原子能科学技术
  • 英文刊名:Atomic Energy Science and Technology
  • 机构:四川大学水力学与山区河流开发保护国家重点实验室水利水电学院;
  • 出版日期:2019-01-14 18:48
  • 出版单位:原子能科学技术
  • 年:2019
  • 期:06
  • 基金:国家自然科学基金资助项目(51706149,51506099,51606130);; 中国博士后科学基金资助项目(2018M643474);; 中央高校基本科研业务费专项资金资助项目(YJ201658)
  • 语种:中文;
  • 页:74-80
  • 页数:7
  • CN:11-2044/TL
  • ISSN:1000-6931
  • 分类号:TK124
摘要
对高过冷度条件下单个蒸汽气泡的凝结过程进行了可视化研究,并与现有的计算模型进行了对比。实验结果表明:高过冷度条件下,运动速度较高的气泡脱离后,其底部产生的液体射流现象会加剧气泡的变形和凝结过程;而现有的计算关联式均无法较好地预测该条件下的气泡动力学行为,凝结末期的相对误差超过50%。此外,通过Sobol方法对气泡凝结模型进行了敏感性分析,并定量评估了不同实验范围内Reynolds数、Jacob数以及Prandtl数对气泡凝结的影响程度。
        A visualized investigation was performed to study the condensation process of a single vapor bubble under high subcooling conditions. The obtained experimental data were compared with the existing correlations. Experimental results show that a liquid jet will form at the bottom of a vapor bubble with high velocity after its detachment at high subcooling, which accelerates bubble deformation and condensation process. In addition, the existing correlations are not able to predict the condensation dynamics of vapor bubble at high subcooling very well, and the relative errors exceed 50% at the end of condensation. Further, the sensitivity analysis was performed with Sobol model to analyze the existing correlations, and the impact of Reynolds number, Jacob number and Prandtl number on bubble condensation process under different conditions was evaluated quantitatively.
引文
[1] 高飞,宋宁,黄哲庆,等.直接接触冷凝器中流动及传热特性[J].化学工程,2014,42(10):41-44.GAO Fei,SONG Ning,HUANG Zheqing,et al.Flow and heat transfer characteristics in novel direct contact condenser[J].Chemical Engineering (China),2014,42(10):41-44(in Chinese).
    [2] 全标,蒋孝蔚,陈志辉,等.抑压式安全壳的抑压特性研究[J].核动力工程,2014,35(2):114-117.QUAN Biao,JIANG Xiaowei,CHEN Zhihui,et al.Research on suppressant characteristics of suppression containment[J].Nuclear Power Engineering,2014,35(2):114-117(in Chinese).
    [3] 张孟超.蒸汽与过冷水直接接触冷凝特性研究[D].北京:华北电力大学,2015.
    [4] YOO J,ESTRADA C E,HASSAN Y A.Development of a mechanistic model for sliding bubbles growth prediction in subcooled boiling flow[J].Applied Thermal Engineering,2018,138:657-667.
    [5] PROSPERETTI A.Vapor bubbles[J].Annual Review of Fluid Mechanics,2017,49(1):221-248.
    [6] FLORSCHUETZ L W,CHAO B T.On the mechanics of vapor bubble collapse[J].Journal of Heat Transfer,1965,87(2):209-220.
    [7] ISENBERG J,SIDEMAN S.Direct contact heat transfer with change of phase:Bubble condensation in immiscible liquids[J].International Journal of Heat and Mass Transfer,1970,13(6):997-1 011.
    [8] AKIYAMA M.Bubble collapse in subcooled boiling[J].Bulletin of JSME,1973,16:570-575.
    [9] KIM S J,PARK G C.Interfacial heat transfer of condensing bubble in subcooled boiling flow at low pressure[J].International Journal of Heat and Mass Transfer,2011,54(13):2 962-2 974.
    [10] RANZ W E,MARSHALL W R.Evaporation from droplets:Part Ⅰ and Ⅱ[J].Chemical Engineering Progress,1952,48:141-173.
    [11] CHEN Y M,MAYINGER F.Measurement of heat transfer at the phase interface of condensing bubbles[J].International Journal of Multiphase Flow,1992,18(6):877-890.
    [12] WARRIER G R,BASU N,DHIR V K.Interfacial heat transfer during subcooled flow boiling[J].International Journal of Heat and Mass Transfer,2002,45(19):3 947-3 959.
    [13] 袁德文,潘良明,陈德奇,等.窄通道中过冷沸腾汽-液界面凝结换热系数[J].核动力工程,2009,30(5):30-34.YUAN Dewen,PAN Liangming,CHEN Deqi,et al.Condensation heat transfer coefficient at vapour-liquid interface of subcooled flow boiling in vertical narrow rectangular channel[J].Nuclear Power Engineering,2009,30(5):30-34(in Chinese).
    [14] ZEITOUN O,SHOUKRI M.Interfacial heat transfer between steam bubbles and subcooled water in vertical upward flow[J].International Journal of Multiphase Flow,1995,22(22):148-148.
    [15] ISSA S A,WEISENSEE P,MACIáN-JUAN R.Experimental investigation of steam bubble condensation in vertical large diameter geometry under atmospheric pressure and different flow conditions[J].International Journal of Heat and Mass Transfer,2014,70(2):918-929.
    [16] KALMAN H,MORI Y H.Experimental analysis of a single vapor bubble condensing in subcooled liquid[J].Chemical Engineering Journal,2002,85(2):197-206.
    [17] TANG J,YAN C,SUN L.A study visualizing the collapse of vapor bubbles in a subcooled pool[J].International Journal of Heat and Mass Transfer,2015,88:597-608.
    [18] 郭容,蔡子琦,高正明.黏性流体中单气泡的运动特性[J].高校化学工程学报,2009,23(6):916-921.
    [19] 严兆大.热能与动力工程测试技术[M].北京:机械工业出版社,2006.
    [20] 屈晓航,田茂诚,张冠敏,等.含不凝气体蒸汽泡直接接触冷凝[J].化工学报,2014,65(12):4 749-4 754.QU Xiaohang,TIAN Maocheng,ZHANG Guanmin,et al.Direct contact condensation of steam bubbles with non-condensable gas[J].CIESC Journal,2014,65(12):4 749-4 754(in Chinese).
    [21] SOBOL I M.Sensitivity estimates for nonlinear mathematical models[J].Mathematical Modelling and Computational Experiments,1993,1(4):407-414.
    [22] SALTELLI A.Making best use of model evaluations to compute sensitivity indices[J].Computer Physics Communications,2002,145(2):280-297.
    [23] 唐继国,阎昌琪,孙立成.超声波场中蒸汽气泡凝结过程及传热特性[J].化工学报,2015,66(11):4 359-4 365.TANG Jiguo,YAN Changqi,SUN Licheng.Condensation process and heat transfer of vapor bubbles in ultrasonic field[J].CIESC Journal,2015,66(11):4 359-4 365(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700