波流边界层水沙运动数值模拟——I:水动力模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation of flow- sediment dynamics in wave- current bottom boundary layer:I:flow dynamics modelling
  • 作者:左利钦 ; 陆永军 ; 朱昊
  • 英文作者:ZUO Liqin;LU Yongjun;ZHU Hao;State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Nanjing Hydraulic Research Institute;
  • 关键词:边界层 ; 波流共同作用 ; 床面形态 ; 数学模型 ; 1DV
  • 英文关键词:bottom boundary layer;;wave-current interaction;;bed form;;mathematical model;;1DV
  • 中文刊名:水科学进展
  • 英文刊名:Advances in Water Science
  • 机构:南京水利科学研究院水文水资源与水利工程科学国家重点实验室;
  • 出版日期:2019-06-11 11:36
  • 出版单位:水科学进展
  • 年:2019
  • 期:04
  • 基金:国家重点研发计划资助项目(2018YFC0407504);; 国家自然科学基金资助项目(51520105014)~~
  • 语种:中文;
  • 页:102-113
  • 页数:12
  • CN:32-1309/P
  • ISSN:1001-6791
  • 分类号:P333
摘要
波流边界层水动力模拟对研究波流相互作用和泥沙运动具有重要的理论意义和实践价值。开发了波流边界层1DV垂向一维水动力数值模型,可用于模拟漩涡沙波床面和平底床面水动力特征。模型的构建基于边界层控制方程,平底床面采用k-ε模型,沙波床面采用双层模型,提出了漩涡层和紊动扩散层交界面紊动动能和紊动耗散率表达式。试验资料验证表明,模型较好地模拟了波浪-水流-床面共同作用下的边界层水动力特征,包括波周期内不同相位流速分布、紊动动能、剪切应力等以及波致时均流速分布和波流相互作用下的时均流速分布等。根据所建模型,讨论了不同床面和波流组合条件下的水动力特征。该模型可为研究波流边界层内水动力特征提供工具。
        Flow dynamics simulation in the bottom boundary layer(BBL) has great theoretical and practical significance in analyzing wave-current interaction and sediment transport. There are many BBL models,however,most of them are for single bed forms. An intra-wave process based 1 DV model was established to simulate the flow dynamics in the BBL under the combined action of waves and currents,which is applicable for both vortex rippled beds and flat beds. This model is based on the governing equations of wave-current BBL. The k-ε model was employed to simulate the turbulence over flat beds. The combined vortex and k-ε model was employed for vortex rippled beds,and expressions of the turbulence kinetic energy and turbulence dissipation at the interface between the vortex layer and turbulence layer were derived. A number of experimental datasets were collected to verify the model,which showed that the model could properly simulate the flow dynamics in the wave-current BBL,such as the instantaneous velocity,kinetic energy and shear stress at different phases as well as the wave-induced mean velocity and wave-current mean velocity. Using this model,discussions were made on the patterns of the flow dynamics over different bed forms in combined wave-current conditions. In conclusion,this paper provides a tool for the study of flow dynamics in the BBL.
引文
[1] 路川藤,贾晓,韩玉芳,等.台风浪作用下长江口深水航道骤淤数值模拟[J].水科学进展,2018,29(5):696- 705.(LU C T,JIA X,HAN Y F,et al.Numerical simulation of sudden silting in the Yangtze Estuary deepwater channel by the wave of typhoon[J].Advances in Water Science,2018,29(5):696- 705.(in Chinese))
    [2] ROELVINK D,MCCALL R,MEHVAR S,et al.Improving predictions of swash dynamics in XBeach:the role of groupiness and incident- band runup [J].Coastal Engineering,2018,134:103- 123.
    [3] 陈杰,蒋昌波,邓斌,等.海啸波作用下岸滩演变与床沙组成变化研究综述[J].水科学进展,2013,24(5):750- 758.(CHEN J,JIANG C B,DENG B,et al.Review of beach profile changes and sorting of sand grains by tsunami waves[J].Advances in Water Science,2013,24(5):750- 758.(in Chinese))
    [4] 李寿千,陆永军,左利钦,等.波浪及波流边界层泥沙起动规律[J].水科学进展,2014,25(1):106- 114.(LI S Q,LU Y J,ZUO L Q,et al.Incipient motion of sediment in wave and combined wave- current boundary layers[J].Advances in Water Science,2014,25(1):106- 114.(in Chinese))
    [5] HASSAN W,RIBBERINK J S.Modelling of sand transport under wave- generated sheet flows with a RANS diffusion model[J].Coastal Engineering,2010,57(1):19- 29.
    [6] KRANENBURG W M,RIBBERINK J S,SCHRETLEN J J,et al.Sand transport beneath waves:the role of progressive wave streaming and other free surface effects[J].Journal of Geophysical Research:Earth Surface,2013,118(1):122- 139.
    [7] KRANENBURG W M,RIBBERINK J S,UITTENBOGAARD R E,et al.Net currents in the wave bottom boundary layer:on wave shape streaming and progressive wave streaming [J].Journal of Geophysical Research,2012,117:F3005.
    [8] ZHANG C,ZHENG J,WANG Y,et al.Modeling wave- current bottom boundary layers beneath shoaling and breaking waves[J].Geo- Marine Letters,2011,31(3):189- 201.
    [9] SMAOUI H,KAIDI S.Bed shear stresses parameterization in wave- current interaction by k- ω turbulence model [J].International Journal of Applied Mechanics,2017,9(4):1750059.
    [10] WILLIAMS I A,FUHRMAN D R.Numerical simulation of tsunami- scale wave boundary layers [J].Coastal Engineering,2016,110:17- 31.
    [11] 诸裕良,徐秀枝,闫晓璐.波流耦合作用下紊流边界层水沙数学模型[J].水动力学研究与进展:A辑,2016,31(4):422- 432.(ZHU Y L,XU X Z,YAN X L.Mathematical models of flow and sediment in turbulent boundary layer under wave- current interaction[J].Journal of Hydrodynamics:Ser A,2016,31(4):422- 432.(in Chinese))
    [12] 郑金海,范文彰,张弛,等.波流边界层内外流速剖面的数值模拟[J].中国科技论文,2016,11(7):746- 750.(ZHENG J H,FAN W Z,ZHANG C,et al.Numerical simulation of velocity profiles inside and outside the wave- current bottom boundary layer[J].China Science Paper,2016,11(7):746- 750.(in Chinese))
    [13] 陈丹丹,林鹏智.波浪作用下紊流边界层数值模拟[C]//第十七届中国海洋(岸)工程学术讨论会论文集.南宁:中国海洋工程学会,2015:498- 501.(CHEN D D,LIN P Z.Numerical simulation of turbulent boundary layer under wave conditions[C]//The 17th Academic Symposium on China’s Marine (Coastal) Engineering.Nanning:China Ocean Engineering Society,2015:498- 501.(in Chinese))
    [14] 吴永胜,练继建,王兆印,等.波浪- 水流相互作用模型[J].水利学报,2002,33(4):13- 17.(WU Y S,LIAN J J,WANG Z Y,et al.Interaction model for wave and current [J].Journal of Hydraulic Engineering,2002,33(4):13- 17.(in Chinese))
    [15] 张弛,劳伯村,郑金海.加速度不对称波浪作用下的底部边界层动力特性[J].河海大学学报(自然科学版),2016,44(3):258- 264.(ZHANG C,LAO B C,ZHENG J H.Hydrodynamic characteristics of bottom boundary layer under acceleration- skewed waves[J].Journal of Hohai University (Nature Sciences),2016,44(3):258- 264.(in Chinese))
    [16] 李诚,张弛,隋倜倜.浅化波浪层流边界层流速分布特性的数值分析[J].海洋学报,2016,38(5):141- 149.(LI C,ZHANG C,SUI T T.Numerical investigation on velocity distribution in the shoaling laminar wave bottom boundary layer[J].Acta Oceanologica Sinica,2016,38(5):141- 149.(in Chinese))
    [17] 吴丹,张弛.随机波浪边界层的数值模拟与分析[J].水动力学研究与进展:A辑,2016,31(3):303- 310.(WU D,ZHANG C.Numerical investigation of random wave boundary layer[J].Journal of Hydrodynamics:Ser A,2016,31(3):303- 310.(in Chinese))
    [18] 陈杰,蒋昌波,刘虎英,等.Mellor- Yamada模型在波浪边界层中的运用[J].海洋通报,2010,29(3):253- 256.(CHEN J,JIANG C B,LIU H Y,et al.Study of wave boundary layer based on Mellor- Yamada model [J].Marine Science Bulletin,2010,29(3):253- 256.(in Chinese))
    [19] NIELSEN P.Coastal bottom boundary layers and sediment transport[M].Singapore:World Scientific,1992.
    [20] DAVIES A G,THORNE P D.Modeling and measurement of sediment transport by waves in the vortex ripple regime [J].Journal of Geophysical Research:Oceans(1978—2012),2005,110(C05017):1- 25.
    [21] van der WERF J J,RIBBERINK J S,O’DONOGHUE T,et al.Modelling and measurement of sand transport processes over full- scale ripples in oscillatory flow[J].Coastal Engineering,2006,53(8):657- 673.
    [22] ZUO L Q.Modelling and analysis of fine sediment transport in wave- current bottom boundary layer[D].Delft:TU Delft and UNESCO- IHE,The Netherlands,2018.
    [23] NIELSEN P.1DV structure of turbulent wave boundary layers[J].Coastal Engineering,2016,112:1- 8.
    [24] DINGLER J R,INMAN D L.Wave- formed ripples in nearshore sands[J].Coastal Engineering Proceedings,1976,1(15):2109- 2126.
    [25] CAMENEN B,LARSON M,BAYRAM A.Equivalent roughness height for plane bed under oscillatory flow[J].Estuarine Coastal & Shelf Science,2009,81(3):409- 422.
    [26] DAVIES A G,VILLARET C.Eulerian drift induced by progressive waves above rippled and very rough beds[J].Journal of Geophysical Research:Oceans,1999,104(C1):1465- 1488.
    [27] GRANT W D,MADSEN O S.Movable bed roughness in unsteady oscillatory flow[J].Journal of Geophysical Research:Oceans (1978—2012),1982,87(C1):469- 481.
    [28] van RIJN L C.Unified view of sediment transport by currents and waves:II:suspended transport[J].Journal of Hydraulic Engineering,2007,133(6):668- 689.
    [29] JENSEN B J,SUMER B M,FREDSOE J.Turbulent oscillatory boundary layers at high Reynolds numbers [J].Journal of Fluid Mechanics,1989,206:265- 297.
    [30] UMEYAMA M.Reynolds stresses and velocity distributions in a wave- current coexisting environment [J].Journal of Waterway,Port,Coastal,and Ocean Engineering,2005,131(5):203- 212.
    [31] van DOORN T.Experimental investigation of near- bottom velocities in water waves without and with a current [R].Delft:Deltares (WL),The Netherlands,1981.
    [32] FREDS?E J,ANDERSEN K H,SUMER B M.Wave plus current over a ripple- covered bed [J].Coastal Engineering,1999,38(4):177- 221.
    [33] O’DONOGHUE T,DOUCETTE J S,van der WERF J J,et al.The dimensions of sand ripples in full- scale oscillatory flows [J].Coastal Engineering,2006,53(12):997- 1012.
    [34] KHELIFA A,OUELLET Y.Prediction of sand ripple geometry under waves and currents [J].Journal of Waterway,Port,Coastal,and Ocean Engineering,2000,126(1):14- 22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700