DGZ-150B型旋喷钻机提升系统稳定性分析及改进
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis and improvement on the stability of the hoisting system of DGZ-150B jet-grouting drilling rig
  • 作者:刘旭光 ; 白祖卫 ; 吕佩东 ; 张鹏鹏
  • 英文作者:LIU Xuguang;BAI Zuwei;Lü Peidong;ZHANG Pengpeng;Shaanxi Xitan Geological Equipment Co., Ltd.;
  • 关键词:旋喷钻机 ; 提升系统 ; 液压冲击 ; AMESim仿真
  • 英文关键词:jet-grouting drilling rig;;hoisting system;;hydraulic shock;;AMESim simulation
  • 中文刊名:探矿工程(岩土钻掘工程)
  • 英文刊名:Exploration Engineering(Rock & Soil Drilling and Tunneling)
  • 机构:陕西西探地质装备有限公司;
  • 出版日期:2019-09-10
  • 出版单位:探矿工程(岩土钻掘工程)
  • 年:2019
  • 期:09
  • 语种:中文;
  • 页:95-100
  • 页数:6
  • CN:11-5063/TD
  • ISSN:1672-7428
  • 分类号:P634.31
摘要
钻机提升系统在开启和关闭时存在着严重的液压冲击现象,因而会造成钻机运行的不平稳。产生液压冲击主要是由换向阀开启和关闭时液压油和负载的动能瞬时转化为压力能而造成的。本文结合DGZ-150B型多管全方位旋喷钻机,主要介绍了通过改进提升液压系统回路和选择合理的提升速度来降低液压冲击的影响。通过利用AMESim软件对改进前后的提升液压系统建模仿真,可以看出改进后的液压系统对液压冲击有明显的控制,系统稳定性大大提高。按照改进后的提升液压系统对钻机的提升系统进行改造,钻机在步进提升时基本感觉不到液压冲击,钻机的震动大大减轻,稳定性增强。
        The drilling rig does not run smoothly because of serious hydraulic shock when the hoisting system starts and closes. The main reason of hydraulic shock is that when the reversing valve is opened and closed, the kinetic energy of hydraulic oil and load is converted into pressure energy instantly. In this paper, the impact of hydraulic shock is reduced by improving the circuit of the hoisting hydraulic system and selecting a reasonable lifting speed. Theoretical and AMESim modeling and simulation of the hoisting hydraulic system befero and after improvement indicates that the improved hydraulic system has obvious control over hydraulic shock, and the system stability is greatly improved. After reforming the hoisting system of the drilling rig, hydraulic shock disappeared during stepping up, and vibration of the drilling rig was greatly reduced with stability enhanced.
引文
[1] 李社育,董朝晖,王龙.XDL-1800型全液压岩心钻机的研发[J].探矿工程(岩土钻掘工程),2012,39(6),8-11.LI Sheyu,DONG Zhaohui,WANG Long.Development of XDL-1800 hydraulic core drill[J].Exploration Engineering (Rock & Soil Drilling and Tunneling),2012,39(6),8-11.
    [2] 雷天觉.新编液压工程手册[M].北京:北京理工大学出版社,1999.LEI Tianjue.New handbook of hydraulic engineering[M].Beijing:Beijing Institute of Technology Press,1999.
    [3] 成大先.机械设计手册[M].北京:化学工业出版社,2002.CHENG Daxian.Handbook of mechanical design[M].Beijing:Chemical Industry Press,2002.
    [4] 张海平.液压速度控制技术[M].北京:机械工业出版社,2014.ZHANG Haiping.Hydraulic speed control technology[M].Beijing:China Machine Press,2014.
    [5] 左健民.液压与气动传动[M].北京:机械工业出版社,2016.ZUO Jianmin.Hydraulic and pneumatic transmission[M].Beijing:China Machine Press,2016.
    [6] 李延民,李坤.防止液压冲击基本回路的特性分析[J].机床与液压,2014,42(19):149-151.LI Yanmin,LI Kun.Characteristics analysis of basic circuit of preventing hydraulic shock[J].Machine Tool & Hydraulics,2014,42(19):149-151.
    [7] 李宁,张玉峰,王建成.液压系统冲击的分析与控制[J].机床与液压,2007,35(4):149-151,191 LI Ning,ZHANG Yufeng,WANG Jiancheng.Analysis and control of impact in hydraulic system[J].Machine Tool & Hydraulics,2007,35(4):149-151,191.
    [8] 曹中一,秦玉彬,吴万荣.混凝土泵泵送系统液压冲击的主动控制方法研究[J].合肥工业大学学报,2013,36(3),261-263,274.CAO Zhongyi,QIN Yubin,WU Wanrong.Study of active control of hydraulic impact in concrete pumping system[J].Journal of Hefei University of Technology,2013,36(3),261-263,274.
    [9] 徐成东.液压冲击的分析计算及减小措施[J].中国重型装备,2016(4):29-31,36.XU Chengdong.Analysis and calculation of hydraulic impact and its reduction measures[J].China Heavy Equipment,2016(4):29-31,36.
    [10] 李正祥.液压系统中液压冲击产生的原因及预防措施[J].实验科学与技术,2014,12(1):15-16,18.LI Zhengxiang.Reasons and precautions to cause hydraulic shock in hydraulic system[J].Experiment Science and Technology,2014,12(1):15-16,18.
    [11] 付永领,祁晓野.AMESim系统建模和仿真:从入门到精通[M].北京:北京航空航天大学出版社,2009.FU Yongling,QI Xiaoye.AMESim system modeling and simulation:from beginner to proficient[M].Beijing:Beihang University Press,2006.
    [12] 梁全,谢基晨,聂利卫.液压系统Amesim计算机仿真进阶教程[M].北京:机械工业出版社,2016.LIANG Quan,XIE Jichen,NIE Liwei.Advanced course of AMESim computer simulation for hydraulic system[M].Beijing:China Machine Press,2016.
    [13] 王展.全液压制动系统仿真分析与实验研究[D].长春:吉林大学,2012.WANG Zhan.Performance simulation and test of the full hydraulic braking system[D].Changchun:Jilin University,2012.
    [14] 孙成通,陈国华,蒋学华,等.液压系统仿真技术与仿真软件研究[J].机床与液压,2008,36(10):140-143.SUN Chengtong,CHEN Guohua,JIANG Xuehua,et al.Research of hydraulic system simulation technology and software[J].Machine Tool & Hydraulics,2008,36(10):140-143.
    [15] 汪小芳,张军,迪茹侠.基于AMESim的负载敏感液压系统防冲击特性的研究[J].液压与气动,2018(11):55-60.WANG Xiaofang,ZHANG Jun,DI Ruxia.Research based on AMESim for anti-shock characteristics of load-sensing hydraulic system[J].Chinese Hydraulics & Pneumatics,2018(11):55-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700