扑草净用于仿刺参养殖塘的安全性研究──基于营养盐在生物沉积物-水界面扩散的视角
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Safe Utilization of Prometryne in Sea Cucumber Culture Pond:From Nutrient Diffusion Flux Across Biodeposition-water Interface Aspect
  • 作者:葛长字 ; 张凯静 ; 曲春风
  • 英文作者:Ge Changzi;Zhang Kaijing;Qu Chunfeng;Marine College, Shandong University (Weihai);
  • 关键词:生物沉积 ; 扩散通量 ; 营养盐 ; 扑草净 ; 仿刺参 ; 生态毒性
  • 英文关键词:biodeposition;;diffusion flux;;nutrient;;prometryne;;sea cucumber;;ecotoxicity
  • 中文刊名:中国农学通报
  • 英文刊名:Chinese Agricultural Science Bulletin
  • 机构:山东大学(威海)海洋学院;
  • 出版日期:2019-01-05
  • 出版单位:中国农学通报
  • 年:2019
  • 期:01
  • 基金:山东省自然科学基金“牡蛎壳粉对沉积物中氮磷的双向调节机制”(ZR2016CM06);; 山东省科技发展计划“复合污染海域组合式生物修复技术研究”(2014GSF117042)
  • 语种:中文;
  • 页:156-160
  • 页数:5
  • CN:11-1984/S
  • ISSN:1000-6850
  • 分类号:S948;X171.5
摘要
温带海域普遍养殖仿刺参,仿刺参养殖塘中常有大型藻类爆发,进而影响仿刺参的生长和生存。通常用扑草净清除大型藻类,由于除草剂的生态毒性,可推断扑草净将影响仿刺参生物沉积物中营养盐的再生,本研究则要验证该假说。将仿刺参生物沉积物暴露于不同浓度的扑草净7天,并测定生物沉积物-水界面营养盐的扩散通量。结果表明:在正常使用的去除大型藻类的扑草净剂量之下,营养盐在仿刺参生物沉积物-水界面的扩散通量不受扑草净的影响。按正常剂量使用扑草净并不影响仿刺参生物沉积物中营养盐的再生与积聚,无需对扑草净对营养盐水平的影响而担忧。研究结果将有助于评估除草剂对海水中营养盐循环的影响。
        Sea cucumber is cultured generally in temperate zone. Macroalgae may outbreak in sea cucumber culture ponds, which influence its survival and growth. Macroalgae are killed by prometryne generally. It issupposed that prometryne might affect the nutrients regeneration in biodeposition because of herbicide toxicity.To evaluate the hypothesis, the sea cucumber feces were exposed to prometryne with different concentrationsfor 7 days and the nutrients diffusion fluxes across the biodeposition-water interface were studied. The resultsshowed that the nutrients diffusion fluxes across the biodeposition-water interface and the construction ofnutrients released from the biodeposition were not influenced by prometryne of normal dosage used to controlmacroalgae, hence, the prometryne could not affect the regeneration/accumulation of nutrients in biodeposition.It is no necessary to worry about the utilization of prometryne in sea cucumber culture ponds. Results of thepresent work may shed light on evaluating effects of herbicide on nutrients cycle in seawaters.
引文
[1] Sun Z L, Gao Q F, Dong S L, et al. Seasonal changes in food uptake by the sea cucumber Apostichopus japonicus in a farm pond:Evidence from C and N stable isotopes[J].Journal of Ocean University of China,2013,12(1):160-168.
    [2]周罡.近海藻华灾害对渔业直接经济损失评估方法研究[J].中国渔业经济,2015,33(5):107-112.
    [3]高亚平,蒋增杰,杜美荣,等.除草剂扑草净和阿特拉津对海草与大型藻类的毒性比较[J].水生生物学报,2017,41(4):930-934.
    [4]任传博,田秀慧,孙岩,等.刺参(Apostichopus japonicus)中13种三嗪类除草剂残留情况及风险评估[J].现代食品科技,2014,30(3):244-249.
    [5] Shi C, Dong S L, Wang F, et al. Effects of four microalgae in diet on growth and energy budget of juvenile sea cucumber Apostichopus japonicus(Selenka)[J].Aquaculture,2013,416-417:296-301.
    [6]葛长字.浅海网箱养殖自身污染营养盐主要来源[J].吉首大学学报,2009,30(5):82-86.
    [7]袁秀堂.刺参Apostichopus japonicus(Selenka)生理生态学及其生物修复作用的研究[D].青岛:中科院海洋研究所,2005
    [8] Wang C H, Qi Y, Pei Y S. Laboratory investigation of phosphorus immobilization in lake sediments using water treatment residuals[J].Chemical Engineering Journal,2012,209:379-385.
    [9] García-Delgado C, Barba V, Marín-Benito J M, et al. Simultaneous application of two herbicides and green compost in a field experiment:Implications on soil microbial community[J].Appllied Soil Ecology,2018,https://doi.org/10.1016/j.apsoil.2018.03.004.
    [11] Ge C Z, Fang J G, Song X F, et al. Response of phytoplankton to multispecies mariculture:a case study on the carrying capacity of shellfish in the Sanggou Bay in China[J].Acta Oceanologia Sinica,2008,27(1):102-112.
    [12] Ge C Z, Zhang F, Xu B D, et al. Accumulation flux of nitrogen in mudflats and its implications for benthic shellfish culture[J].Aquaculture International,2013,21:311-326.
    [13] Ge C Z, Chai Y C, Wang H Q, et al. Ocean acidification:One potential driver of phosphorus eutrophication[J].Marine Pollution Bulletin,2017,115:149-153.
    [14] Munson A D, Timmer V R. Soil nitrogen dynamics and nutrition of pine following silvicultural treatments in boreal and Great Lakes-St.Lawrence plantations[J].Forest Ecology and Management,1995,76:169-179.
    [15] Salminen J, Setala H, Haimi J. Regulation of decomposer community structure and decomposition processes in herbicide stressed humus soil[J].Appllied Soil Ecology,1997,6(3):265-274.
    [16]姚斌,张超兰.除草剂对土壤微生物生物量碳、氮及呼吸的影响[J].生态环境,2008,17(2):580-583.
    [17] Cycon′M, Wojcik M, Borymski S, et al. Short-term effects of the herbicide napropamide on the activity and structure of the soil microbial community assessed by the multi-approach analysis[J].Appllied Soil Ecology,2013,66:8-18.
    [18] Mu?oz-Leoz B, Garbisu C, Charcosset J, et al. Non-target effects of three formulated pesticides on microbially-mediated processes in a clay-loam soil[J].Science of the Total Environment,2013,449:345-354.
    [19] Mijangos I, Becerril J M, Albizu I, et al. Effects of glyphosate on rhizosphere soil microbial communities under two different plant composition by cultivation-dependent and-independent methodologies[J].Soil Biology&Biochemistry,2009,41:505-513.
    [20] Panettieri M, Lazaro L, Lo′pez-Garr R, et al. Glyphosate effect on soil biochemical properties under conservation tillage[J].Soil&Tillage Research,2013,133:16-24.
    [21] Das A C, Debnath A. Effect of systemic herbicides on N2-fixing and phosphate solubilizing microorganisms in relation to availability of nitrogen and phosphorus in paddy soils of West Bengal[J].Chemosphere,2006,65:1082-1086.
    [22] Das A C, Das R, Bhowmick S. Non-symbiotic N2-fixation and phosphate-solubility in Gangetic alluvial soil as influenced by preemergence herbicide residues[J].Chemosphere,2015,135:202-207.
    [23] Sura S, Waiser M J, Tumber V, et al. Effects of a herbicide mixture on primary and bacterial productivity in four prairie wetlands with varying salinities:An enclosure approach[J].Science of the Total Environment,2015,512-513:526-539.
    [24] Zhou J H, Sun X W, Jiao J G, et al. Dynamic changes of bacterial community under the influence of bacterial-feeding nematodes grazing in prometryne contaminated soil[J].Applled Soil Ecology,2013,64:70-76.
    [25]孙青,史淳星,石坤,等.添加不同N源条件下典型除草剂对土壤呼吸和N2O排放的影响[J].环境科学,2012,33(6):1994-1999.
    [26]崔荟萍,赵桂琴,刘欢.除草剂对燕麦田土壤脲酶和碱性磷酸酶活性的影响[J].中国草地学报,2014,36(1):37-43.
    [27] Chen Q L, Wang H, Yang B S, et al. The combined effects of atrazine and lead(Pb):Relative microbial activities and herbicide dissipation[J].Ecotoxicology and Environmental Safety,2014,102:93-99.
    [28]姜虎生,王宏燕.除草剂对土壤脱氢酶活性及呼吸强度的影响[J].吉林农业科学,2011,36(5):53-55.
    [29]吴小虎,徐军,董丰收,等.5种除草剂对土壤蔗糖酶和脲酶活性的影响[J].农药学学报,2015,17(2):179-184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700