食源性致病菌生长延滞期建模的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in Modeling of Foodborne Pathogen Growth at Lag Phase
  • 作者:岳思远 ; 苏亮 ; 任鹏程 ; 刘阳泰 ; 王翔 ; 刘箐 ; 董庆利
  • 英文作者:YUE Siyuan;SU Liang;REN Pengcheng;LIU Yangtai;WANG Xiang;LIU Qing;DONG Qingli;School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology;China National Center for Food Safety Risk Assessment;
  • 关键词:食源性致病菌 ; 预测微生物 ; 延滞期
  • 英文关键词:foodborne pathogen;;predictive microbiology;;lag phase
  • 中文刊名:食品科学
  • 英文刊名:Food Science
  • 机构:上海理工大学医疗器械与食品学院;国家食品安全风险评估中心;
  • 出版日期:2018-04-02 14:48
  • 出版单位:食品科学
  • 年:2019
  • 期:01
  • 基金:“十二五”国家科技支撑计划项目(2015BAK36B04)
  • 语种:中文;
  • 页:321-326
  • 页数:6
  • CN:11-2206/TS
  • ISSN:1002-6630
  • 分类号:TS201.3
摘要
基于预测微生物学理论,准确预测食源性致病菌的数量及生长对降低食品安全风险具有重大意义。本文针对近年来国内外食源性致病菌生长延滞期的建模工作,从食源性致病菌延滞期的测定方法和建模方法两方面进行综述。通过分析现有延滞期建模的相关研究,指出目前延滞期建模研究中存在的问题。建议未来应基于微生物生长机理明确延滞期定义,进一步根据延滞期定义改进、创新延滞期测定方法及建模方法,同时量化分析延滞期影响因素并整合延滞期建模。
        Predicting accurately the number and growth of foodborne pathogens based on predictive microbiology is of great significance for reducing food safety risks. The review deals with recent progress in the modeling of foodborne pathogen growth at the lag phase. We present a summary of the commonly used techniques for lag period determination and modelling approaches. After reviewing the previous studies on lag phase modeling, we point out the limitations and we suggest that the lag phase should be redefined based on the microbial growth mechanism. In the future, improved and innovative enumeration techniques and modeling methods will be developed according to the new definition of lag phase. Quantitative analysis and integration into lag phase modeling of the factors influencing the lag phase remain to be conducted.
引文
[1]World Health Organization.Food safety[EB/OL].(2017-08-31)[2017-12-21].http://www.who.int/mediacentre/factsheets/fs399/en/.
    [2]刘秀梅,王茂起,丛黎明,等.食源性源性疾病监测体系与监控技术的研究[EB/OL].(2011-04-26)[2017-12-21].http://www.chinacdc.cn/kjxm/kjcg/201104/t20l 10426-42245.htm.
    [3]国家卫生计生委.国家卫生计生委办公厅关于2017年第四季度全国食物中毒事件情况的通报[EB/OL].(2016-04-01)[2017-12-21].http://health.v118.com/bjys/0H633931402016.html.
    [4]AGUIRRE J S,KOUTSOUMANIS K P.Towards lag phase of microbial populations at growth-limiting conditions:the role of the variability in the growth limits of individual cells[J].International Journal of Food Microbiology,2016,224:1-6.DOI:10.1016/j.ijfoodmicro.2016.01.021.
    [5]董庆利,刘阳泰,苏亮,等.食源性致病菌单细胞观测与预测的研究进展[J].农业机械学报,2015,46(11):221-229.DOI:10.6041/j.issn.1000-1298.2015.11.030.
    [6]石育娇,董庆利,刘弘,等.酸化和渗透压对不同状态肠炎沙门氏菌生长的影响[J].食品科学,2017,38(4):58-64.DOI:10.7506/spkx1002-6630-201704010.
    [7]ELIAS S D O,NORONHA T B,TONDO E C.Assessment of Salmonella spp.and Escherichia coli O157:H7 growth on lettuce exposed to isothermal and non-isothermal conditions[J].Food Microbiology,2018,72:206-213.DOI:10.1016/j.fm.2017.11.016.
    [8]OMAC B,MOREIRA R G,CASTELL-PEREZ E.Quantifying growth of cold-adapted Listeria monocytogenes and Listeria innocua on fresh spinach leaves at refrigeration temperatures[J].Journal of Food Engineering,2018,224:17-26.DOI:10.1016/j.jfoodeng.2017.12.022.
    [9]SOMMERS C,HUANG C Y,SHEEN L Y,et al.Growth modeling of Uropathogenic Escherichia coli in ground chicken meat[J].Food Control,2018,86:397-402.DOI:10.1016/j.foodcont.2017.12.007.
    [10]TARLAK F,OZDEMIR M,MELIKOGLU M.Mathematical modelling of temperature effect on growth kinetics of Pseudomonas spp.on sliced mushroom(Agaricus bisporus)[J].International Journal of Food Microbiology,2017,266:274-281.DOI:10.1016/j.ijfoodmicro.2017.12.017.
    [11]PARK S Y,HA S D.Predictive growth model of the effects of temperature on the growth kinetics of generic Escherichia coli in the Korean traditional rice cake product“Garaetteok”[J].Journal of Food Science&Technology,2018,55(2):506-512.DOI:10.1007/s13197-017-2959-z.
    [12]董庆利,姚远,赵勇,等.铜绿假单胞菌的温度、pH值和乳酸钠主参数模型构建[J].农业机械学报,2014,45(1):197-202.DOI:10.6041/j.issn.1000-1298.2014.01.031.
    [13]XUAN Xiaoting,DING Tian,LI Jiao,et al.Estimation of growth parameters of Listeria monocytogenes after sublethal heat and slightly acidic electrolyzed water(SAEW)treatment[J].Food Control,2017,71:17-25.DOI:10.1016/j.foodcont.2016.06.018.
    [14]张倩,叶可萍,关正萍,等.运用Real-time PCR方法建立大肠杆菌O157:H7生长预测模型[J].中国食品学报,2017,17(9):203-212.DOI:10.16429/j.1009-7848.2017.09.026.
    [15]JULIO P F,VIJAY J,GONZALO G D F,et al.Variability in cell response of Cronobacter sakazakiiafter mild-heat treatments and its impact on food safety[J].Frontiers in Microbiology,2016,7(7):1-14.DOI:10.3389/fmicb.2016.00535.
    [16]SHI Chao,SONG Kaikuo,ZHANG Xiaorong,et al.Antimicrobial activity and possible mechanism of action of citral against Cronobacter sakazakii[J].PLoS ONE,2016,11(7):e0159006.DOI:10.1371/journal.pone.0159006.
    [17]刘珊娜,赵森,孙涛,等.单增李斯特菌的生长特性及其在冷藏牛奶中的预测模型[J].食品工业科技,2017,38(2):187-190;195.
    [18]LIAO Chao,PENG Zhiyun,LI Jibing,et al.Simultaneous construction of PCR-DGGE-based predictive models of Listeria monocytogenes and Vibrio parahaemolyticus on cooked shrimps[J].Letters in Applied Microbiology,2015,60(3):210-216.DOI:10.1111/lam.12376.
    [19]REICHERT-SCHWILLINSKY F,PIN C,DZIECIOL M,et al.Stressand growth rate-related differences between plate count and real-time PCR data during growth of Listeria monocytogenes[J].Applied&Environmental Microbiology,2009,75(7):2132-2138.DOI:10.1128/AEM.01796-08.
    [20]YE Keping,WANG Huhu,ZHANG Xinxiao,et al.Development and validation of a molecular predictive model to describe;the growth of Listeria monocytogenes in vacuum-packaged chilled pork[J].Food Control,2013,32(1):246-254.DOI:10.1016/j.foodcont.2012.11.017.
    [21]孙文烁,靳梦曈,王敬敬,等.运用Real-time PCR建立即食虾中副溶血性弧菌分子预测模型[J].现代食品科技,2014,30(7):142-148.
    [22]ZHANG Zhaohuan,LIU Haiquan,LOU Yang,et al.Quantifying viable Vibrio parahaemolyticus and Listeria monocytogenes simultaneously in raw shrimp[J].Applied Microbiology&Biotechnology,2015,99(15):6451-6462.DOI:10.1007/s00253-015-6715-x.
    [23]POSCHET F,BERNAERTS K,GEERAERD A H,et al.Sensitivity analysis of microbial growth parameter distributions with respect to data quality and quantity by using Monte Carlo analysis[J].Mathematics and Computers in Simulation,2004,65(3):231-243.DOI:10.1016/j.matcom.2003.12.002.
    [24]马秀玲,陈蕊君,王飞,等.吸光度法快速确定菌悬液浓度及其适用范围[J].微生物学杂志,2014,34(4):90-92.DOI:10.3969/j.issn.1005-7021.2014.04.018.
    [25]张昭寰,娄阳,杜苏萍,等.分子生物学技术在预测微生物学中的应用与展望[J].食品科学,2017,38(9):248-257.DOI:10.7506/spkx1002-6630-201709040.
    [26]HEID C A,STEVENS J,LIVAK K J,et al.Real time quantitative PCR[J].Genome Research,1996,6(10):986-994.DOI:10.1101/gr.6.10.986.
    [27]GUAN Zhengping,JIANG Yun,GAO Feng,et al.Analysis of a molecular predictive mode for the growth of Staphylococcus aureus in pork[J].International Journal of Food Properties,2016,20(1):68-82.DOI:10.1080/10942912.2015.1136325.
    [28]KELLY C D,RAHN O.The growth rate of individual bacterial cells[J].Journal of Bacteriology,1932,23(2):147-153.
    [29]董庆利,王忻,丁甜,等.铜绿假单胞菌单细胞与群体细胞生长规律模拟与验证[J].农业机械学报,2014,45(9):204-209.DOI:10.6041/j.issn.1000-1298.2014.09.033.
    [30]MCKELLAR R C.A heterogeneous population model for the analysis of bacterial growth kinetics[J].International Journal of Food Microbiology,1997,36(2):179-186.
    [31]BARANYI J,PIN C.Estimating bacterial growth parameters by means of detection times[J].Applied and Environmental Microbiology,1999,65(2):732-736.
    [32]FRANCOIS K,DEVLIEGHERE F,STANDAERT A R,et al.Modelling the individual cell lag phase.isolating single cells:protocol development[J].Letters in Applied Microbiology,2003,37(1):26-30.DOI:10.1046/j.1472-765X.2003.01340.x.
    [33]HUANG Lihan.Direct construction of predictive models for describing growth of Salmonella,Enteritidis in liquid eggs:a onestep approach[J].Food Control,2015,57:76-81.DOI:10.1016/j.foodcont.2015.03.051.
    [34]BUCHANAN R L,WHITING R C,DAMERT W C.When is simple good enough:a comparison of the Gompertz,Baranyi,and threephase linear models for fitting bacterial growth curves[J].Food Microbiology,1997,14(4):313-326.
    [35]GIBSON A M,BRATCHELL N,ROBERTS T A.The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry[J].Journal of Applied Bacteriology,1987,62(6):479-490.DOI:10.1111/j.1365-2672.1987.tb02680.x.
    [36]KONO T.Kinetics of microbial cell growth[J].Biotechnology&Bioengineering,1968,10(2):105-131.
    [37]BARANYI J,ROBERTS T A.A dynamic approach to predicting bacterial growth in food[J].International Journal of Food Microbiology,1994,23(3/4):277-294.DOI:10.1016/0168-1605(94)90157-0.
    [38]HUANG Lihan.Growth kinetics of Listeria monocytogenes in broth and beef frankfurters:determination of lag phase duration and exponential growth rate under isothermal conditions[J].Journal of Food Science,2008,73(5):E235-E242.DOI:10.1111/j.1750-3841.2008.00785.x.
    [39]BARANYI J,MCCLURE P J,SUTHERLAND J P,et al.Modeling bacterial growth responses[J].Journal of Industrial Microbiology,1993,12(3/4/5):190-194.
    [40]艾均,李林志,苏湛,等.基于观点传播的改进相似性计算评分预测方法[J].上海理工大学学报,2017,39(3):236-240.
    [41]RATKOWSKY D A,OLLEY J,MCMEEKIN T A,et al.Relationship between temperature and growth rate of bacterial cultures[J].Journal of Bacteriology,1982,149(1):1-5.
    [42]BARANYI J,TAMPLIN M L.ComBase:a common database on microbial responses to food environments[J].Journal of Food Protection,2004,67(9):1967-1971.DOI:10.4315/0362-028X-67.9.1967.
    [43]TENENHAUS-AZUZAE F,ELLOUZE M.Software for predictive microbiology and risk assessment:a description and comparison of tools presented at the ICPMF8 Software Fair[J].Food Microbiology,2015,45:290-299.DOI:10.1016/j.fm.2014.06.026.
    [44]HUANG Lihan.IPMP 2013:a comprehensive data analysis tool for predictive microbiology[J].International Journal of Food Microbiology,2014,171(2):100-107.DOI:10.1016/j.ijfoodmicro.2013.11.019.
    [45]董庆利.食品预测微生物学:过去现在将来[J].农产品加工(学刊),2009,166(3):38-41;46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700