腐植酸和Cd~(2+)对黏土胶粒在饱和多孔介质中迁移的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of humic acid and cadmium on the transport of clay colloids in saturated porous media
  • 作者:唐章 ; 杨新瑶 ; 闫馨予 ; 张海燕 ; 杨悦锁
  • 英文作者:TANG Zhang;YANG Xin-yao;YAN Xin-yu;ZHANG Hai-yan;YANG Yue-suo;Key Lab of Eco-restoration of Regional Contaminated Environment Ministry of Education, Shenyang University;Hydrogeology and Engineering Geology Exploration Institute of Heilongjiang Province;Key Laboratory of Groundwater Environment and Resources, Ministry of Education, Jilin University;
  • 关键词:黏土胶粒 ; Cd2+ ; 腐植酸 ; 饱和多孔介质 ; 共迁移
  • 英文关键词:clay colloids;;Cd2+;;HA;;saturated quartz sand;;co-transport
  • 中文刊名:农业环境科学学报
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:沈阳大学区域污染环境生态修复教育部重点实验室;黑龙江省水文地质工程地质勘察院;吉林大学地下水环境与资源教育部重点实验室;
  • 出版日期:2019-01-20
  • 出版单位:农业环境科学学报
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金面上项目(41672248,41471409);; 辽宁省创新团队项目(LT2015017);; 辽宁省特聘教授项目;; 沈阳市中青年科技创新人才项目(RC170244);; 黑龙江省国土资源科技研究项目(201507)~~
  • 语种:中文;
  • 页:117-122
  • 页数:6
  • CN:12-1347/S
  • ISSN:1672-2043
  • 分类号:X131.3
摘要
为探究地下水中腐植酸(HA)和Cd~(2+)复合污染物对黏土胶粒在饱和多孔介质中迁移的影响,本文选择蒙脱石和高岭石两种黏土胶粒作为研究对象,采用同步注射柱实验,在饱和石英砂柱中分别同步注射黏土胶粒与腐植酸、Cd~(2+)或腐植酸+Cd~(2+)混合液,来研究腐植酸和Cd~(2+)与黏土胶粒的共迁移。结果显示:高岭石在石英砂柱中的沉降速度依次为:无Cd~(2+)无腐植酸(3.72 min-1)>仅有Cd~(2+)(2.82 min-1)>Cd~(2+)与腐植酸共存(2.01 min-1)>仅有腐植酸(0.46 min-1);蒙脱石在石英砂柱中的沉降速度依次为:无Cd~(2+)无腐植酸(1.02 min-1)>仅有Cd~(2+)(0.97 min-1)>Cd~(2+)与腐植酸共存(0.85 min-1)>仅有腐植酸(0.30 min-1)。研究结果表明,腐植酸和Cd~(2+)对蒙脱石和高岭石胶粒的迁移效果比较一致,它们均能促进两种黏土胶粒的迁移,促进作用腐植酸最强而Cd~(2+)较弱;腐植酸和Cd~(2+)之间存在拮抗作用,即二者的加合作用反而小于腐植酸单独作用。通过对黏土胶粒的粒径和Zeta电位进行测试分析,可推测腐植酸和Cd~(2+)是通过不同的机理来促进黏土胶粒的迁移:腐植酸通过改变黏土胶粒表面的电性来抑制黏土胶粒的沉降,而Cd~(2+)通过促使黏土胶粒聚凝来降低其沉降。这些发现有助于更好地理解天然土壤胶粒在环境中的迁移和浓度分布。
        With the aim to explore the impact of humic acid(HA)and cadmium ion(Cd~(2+))on the transport of clay colloids in saturated porous media, co-transport column experiments were performed using montmorillonite and kaolinite colloids as surrogates. Results showed that the deposition rate of kaolinite colloids was the highest in the absence of HA and Cd~(2+)(3.72 min-1), lower in the presence of only Cd~(2+)(2.82 min-1), even lower in the presence of both HA and Cd~(2+)(2.01 min-1), and the lowest in the presence of only HA(0.46 min-1). The similar trend in changing deposition rate in response to the variability of Cd~(2+)and/or HA was also observed for montmorillonite colloids, i.e., the rate was 1.02 min-1in the absence of HA and Cd~(2+), 0.97 min-1in the presence of only Cd~(2+), 0.85 min-1in the presence of both HA and Cd~(2+),and 0.30 min-1in the presence of only HA. These results demonstrated the consistent role of HA and Cd~(2+)in the mobility of both clay colloids; HA and Cd~(2+)both promoted the transport of the two clay colloids. The effect of HA was stronger than that of Cd~(2+). Moreover, an antagonistic interaction between humic acid and cadmium ions occurred, rendering the combined effect of the two lower than that of only HA.Based on the particle size and zeta potential measurement of the clay colloids, we speculated that HA and Cd~(2+)promoted the colloid mobility via different mechanisms:HA achieved this by modifying the surface electrical properties of the clay colloids, while Cd~(2+)achieved this by inducing particle aggregation. These findings improve current knowledge on the translocation and concentration distribution of natural soil colloids in the environment.
引文
[1] Davis C H, Mathias L J, Gilman J W, et al. Effects of melt-processing conditions on the quality of poly(ethylene terephthalate)montmorillonite clay nanocomposites[J]. Journal of Polymer Science Part B Polymer Physics, 2002, 40(23):2661-2666.
    [2]滕飞,李福春,吴志强,等.高岭石和蒙脱石吸附胡敏酸的对比研究[J].中国地质, 2009, 36(4):892-898.TENG Fei, LI Fu-chun, WU Zhi-qiang, et al. Comparative study on adsorption of humic acid by kaolinite and montmorillonite[J]. Geology in China, 2009, 36(4):892-898.
    [3]孙慧敏,殷宪强,曹秀蓉.离子强度对蒙脱石胶体在饱和多孔介质中运移与释放的影响[J].环境科学学报, 2012, 32(5):1120-1125.SUN Hui-min, YIN Xian-qiang, CAO Xiu-rong. Effect of ionic strength on migration and release of montmorillonite in saturated porous media[J]. Acta Scientiae Circumstantiae, 2012, 32(5):1120-1125.
    [4]孙慧敏.黏土矿物对铅的环境行为影响研究[D].杨凌:西北农林科技大学, 2010.SUN Hui-min. Effect of clay minerals on environmental behavior of study[D]. Yangling:Northwest A&F University, 2010.
    [5]胡俊栋,沈亚婷,王学军.土壤胶体在不同饱和度土壤介质中的释放与淋溶行为研究[J].农业环境科学学报, 2009, 28(9):1829-1836.HU Jun-dong, SHEN Ya-ting, WANG Xue-jun. The study on the release and leaching behavior of soil colloids in different saturated soil media[J]. Journal of Agro-Environment Science, 2009, 28(9):1829-1836.
    [6]刘庆玲,徐绍辉.地下环境中胶体促使下的污染物运移研究进展[J].土壤, 2005(2):129-135.LIU Qing-ling, XU Shao-hui. The research progress of pollutant migration in underground environment[J]. Soils, 2005(2):129-135.
    [7]孙慧敏,殷宪强,王益权. pH对黏土矿物胶体在饱和多孔介质中运移的影响[J].环境科学学报, 2012, 32(2):419-424.SUN Hui-min, YIN Xian-qiang, WANG Yi-quan. The influence of pH on the migration of clay mineral colloids in saturated porous media[J].Acta Sicentiae Circumstantiae, 2012, 32(2):419-424.
    [8]杨悦锁,王园园,宋晓明,等.土壤和地下水环境中胶体与污染物共迁移研究进展[J].化工学报, 2017, 68(1):23-36.YANG Yue-suo, WANG Yuan-yuan, SONG Xiao-ming, et al. Advances in the study of colloid and pollutant in soil and groundwater environment[J]. CIESC Journal, 2017, 68(1):23-36.
    [9] Patricia M, Carolina M, Alejandro C C. Cd(Ⅱ)removal from aqueous solution by Eleocharis acicularis biomass, equilibrium and kinetic studies[J]. Bioresource Technology, 2010, 101(8):2637-2642.
    [10]李婧,周艳文,陈森,等.我国土壤镉污染现状、危害及其治理方法综述[J].安徽农学通报, 2015, 21(24):104-107.LI Jing, ZHOU Yan-wen, CHEN Sen, et al. The present situation,harm and treatment of soil cadmium pollution in China are reviewed[J]. Anhui Agricultural Science Bulletin, 2015, 21(24):104-107.
    [11] Duan J C, Tan J H, Hao J M, et al. Size distribution characteristics and sources of heavy metals in haze episod in Beijing[J]. Journl of Environmental Sciences, 2014, 26(1):189-196.
    [12] Xu S P, Qian L, Saiers J E. Straining of non-spherical colloids in saturated porous media[J]. Environmental Science&Technology, 2008, 42(3):771-778.
    [13] Yang X, Yin Z, Chen F, et al. Organic matter induced mobilization of polymer-coated silver nanoparticles from water-saturated sand[J]. Science of the Total Environment, 2015, 529:182-190.
    [14] Aksu I, Bazilevskaya E, Karpyn Z T. Swelling of clay minerals in unconsolidated porous media and its impact on permeability[J]. Georesj,2015, 7:1-13.
    [15] Yang X, Flynn R, Kammer F V D, et al. Quantifying the influence of humic acid adsorption on colloidal microsphere deposition onto ironoxide-coated sand[J]. Environmental Pollution, 2010, 158(12):3498-3506.
    [16] Gao B, Saiers J E, Ryan J N. Deposition and mobilization of clay colloids in unsaturated porous media[J]. Water Resources Research, 2004,40(8):10-1029.
    [17] Shen C, Wang H, Lazouskaya V, et al. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media[J]. Journal of Contaminant Hydrology, 2015, 177-178:18.
    [18] Cai P, Huang Q Y, Zhang X W. Interactions of DNA with clay minerals and soil colloidal particles and protection against degradation by DNase[J]. Environmental Science&Technology, 2006, 40(9):2971.
    [19]魏世勇,谭文峰,刘凡.土壤腐殖质-矿物质交互作用的机制及研究进展[J].中国土壤与肥料, 2009(1):1-6.WEI Shi-yong, TAN Wen-feng, LIU Fan. Mechanism and research progress of soil humus-mineral interaction[J]. Soil and Fertilizer Sciences, 2009(1):1-6.
    [20]吴宏海,刘佩红,张秋云,等.高岭石对重金属离子的吸附机理及其溶液的pH条件[J].高校地质学报, 2005, 11(1):85-91.WU Hong-hai, LIU Pei-hong, ZHANG Qiu-yun, et al. The adsorption mechanism of kaolinite on heavy metal ions and their pH conditions[J]. Geological Journal of China Universities, 2005, 11(1):85-91.
    [21] Angove M J, Johnson B B, Wells J D. Adsorption of cadmium(Ⅱ)on kaolinite[J]. Colloids&Surfaces A Physicochemical&Engineering Aspects, 1997, 126(2):137-147.
    [22] Wang C, Bobba A D, Attinti R, et al. Retention and transport of silica nanoparticles in saturated porous media:Effect of concentration and particle size[J]. Environmental Science&Technology, 2012, 46(46):7151-7158.
    [23] Elimelech M, Gregory J, Jia X, et al. Particle deposition and aggregation[M]. 1995.
    [24] Missana T, Adell A. On the applicability of DLVO theory to the prediction of clay colloids stability[J]. J Colloid Interface Sci, 2000, 230(1):150-156.
    [25] Tombácz E, Szekeres M. Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite[J]. Applied Clay Science, 2006, 34(1):105-124.
    [26]朱晓婧,何江涛.腐植酸-高岭土复合体形成机制及对三氯乙烯的吸附[J].环境科学, 2015(1):227-236.ZHU Xiao-jing, HE Jiang-tao. Formation mechanism of humic acidkaolin complex and adsorption of trichloroethylene[J]. Environmental Science, 2015(1):227-236.
    [27]李爱民.腐植酸在高岭石上的吸附及其对Cu(Ⅱ)在高岭石上吸附的影响[D].南京:南京农业大学, 2006.LI Ai-min. Adsorption of humic acid on kaolinite and the Cu(Ⅱ)adsorbed on kaolinite[D]. Nanjing:Nanjing Agricultural University,2006.
    [28]滕飞.黏土矿物及黏土矿物-胡敏酸复合体对Cd2+吸附及对Cd2+和Pb2+的选择性[D].南京:南京农业大学, 2009.TENG Fei. Clay minerals and clay mineral-humic acid complex on Cd adsorption and the selection of Cd and Pb[D]. Nanjing:Nanjing Agricultural University, 2009.
    [29]何为红,李福春,吴志强,等.重金属离子在胡敏酸-高岭石复合体上的吸附[J].岩石矿物学杂志, 2007, 26(4):67-73.HE Wei-hong, LI Fu-chun, WU Zhi-qiang, et al. Adsorption of heavy metal ions on the complex of humic acid-kaolinite[J]. ACTA Petrologica et Mineralogica, 2007, 26(4):67-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700