W同位素高精度负离子热电离质谱(NTIMS)测定方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High-precision tungsten isotopic measurement by negative thermal ionization mass spectrometry( NTIMS)
  • 作者:许俊杰 ; 储著银 ; 刘金高 ; 吴怀春 ; 王梦杰 ; 李潮峰 ; 郭敬辉
  • 英文作者:XU Jun Jie;CHU Zhu Yin;LIU Jin Gao;WU Huai Chun;WANG MengJie;LI Chao Feng;GUO Jing Hui;School of Ocean Sciences,China University of Geosciences;State Key Laboratory of Lithospheric Evolution,Institute of Geology and Geophysics,Chinese Academy of Sciences;State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences;University of Chinese Academy of Sciences;
  • 关键词:钨同位素 ; 负离子热电离质谱法 ; 氧校正 ; 高精度
  • 英文关键词:W isotopes;;NTIMS;;Isobaric oxide correction;;High-precision
  • 中文刊名:岩石学报
  • 英文刊名:Acta Petrologica Sinica
  • 机构:中国地质大学海洋学院;中国科学院地质与地球物理研究所岩石圈演化国家重点实验室;中国地质大学地质过程与矿产资源国家重点实验室;中国科学院大学;
  • 出版日期:2019-02-15
  • 出版单位:岩石学报
  • 年:2019
  • 期:02
  • 基金:岩石圈国家重点实验室研究课题(11401790);; 国家自然科学基金重大项目(41490631)和面上项目(41673061)联合资助
  • 语种:中文;
  • 页:334-344
  • 页数:11
  • CN:11-1922/P
  • ISSN:1000-0569
  • 分类号:P575
摘要
W同位素的高精度测定对于研究地球、月球和太阳系其他行星的起源和早期演化、核幔相互作用等领域具有重要意义。本文开展了负离子热电离质谱(NTIMS)高精度W同位素测定方法研究(测定WO_3~-)。采用多接收动态跳扫方式对W同位素进行测定,实时在线测定~(18)O/~(16)O,并利用实验室实时在线氧校正NTIMSOs同位素分析时获得的~(17)O/~(16)O-~(18)O/~(16)O同位素分馏趋势线计算~(17)O/~(16)O,进行氧校正计算。对多接收动态和多接收静态数据处理方式及不同的同位素分馏校正方法进行了详细对比研究。在上述工作基础上,最终建立了以~(186)W/~(184)W=0.92767进行标准化,采用多接收动态方法进行数据处理的在线氧校正W同位素NTIMS测定方法。~(182)W/~(184)W测定结果的外部精度(2RSD)可达3×10~(-6)~6×10~(-6),基本满足地球、月球和行星早期演化等W同位素研究工作的需要。
        High precision W isotopic measurement is of great importance for investigation of the origin and early evolution of the Earth,the Moon and other planets in the Solar System,the core-mantle interaction and other related fields. In this study,a newly highprecision W isotopic measurement method by negative thermal ionization mass spectrometry( NTIMS)( measuring WO_3~- ion beams) is presented. The W isotopes were measured in a multi-static analytical protocol with two lines of acquisition.~(18)O/~(16)O ratios were measured in-run on per-integration basis and ~(17)O/~(16)O ratios were calculated according to the correlation trend line of mass fractionation between ~(17)O/~(16)O and ~(18)O/~(16)O obtained fromOsO_3~- measurements by NTIMS( Chu et al.,2015),to perform isobaric oxide corrections. The measurement results between multi-dynamic and multi-static data reduction methods were thoroughly compared. With the multi-dynamic data reduction mode,the external precision( 2 RSD) of ~(182)W/~(184)W normalized to ~(186)W/~(184)W = 0. 92767( named as(~(182)W/~(184)W)N6/4-mdyn) in a measurement period could reach 3 × 10~(-6)~ 6 × 10~(-6),but the difference of the average of(~(182)W/~(184)W)N6/4-mdynbetween two measurement periods could be up to ~ 10 × 10~(-6). The external precision( 2 RSD) of ~(182)W/~(184)W normalized to ~(186)W/~(183)W = 1. 9859 with the multi-static data reduction mode( named as(~(182)W/~(184)W)N6/3-mstat; the same below) could reach 5 ×10~(-6)~ 6 × 10~(-6) in a measurement period,and difference of the average of(~(182)W/~(184)W)N6/3-mstatbetween two measurement periods was about 4 × 10~(-6). However,when normalizing to ~(186)W/~(184)W=0. 92767 with the multi-static data reduction mode,an obvious residual linear correlation between fractionation-corrected ~(182)W/~(184)W and ~(183)W/~(184)W( i. e.,(~(182)W/~(184)W)N6/4-mstatand(~(183)W/~(184)W)N6/4-mstat)could be observed. The variation of the ~(182)W/~(184)W ratios during different measurement periods and the correlation between ~(182)W/~(184)W and ~(183)W/~(184)W mentioned above are most likely the results of Faraday cup degradation over months-long intervals. Since the multidynamic data reduction method can simultaneously eliminate the Faraday cup efficiency and mass fractionation effects,and can achieve~ 3 × 10~(-6) external precision( 2 RSD) in a measurement period,we recommend to use multi-dynamic data reduction method for W isotopic measurement.
引文
Andreasen R and Sharma M.2009.Fractionation and mixing in a thermal ionization mass spectrometer source:Implications and limitations for high-precision Nd isotope analyses.International Journal of Mass Spectrometry,285(1-2):49-57
    Archer GJ,Mundl A,Walker RJ,Worsham EA and Bermingham KR.2017.High-precision analysis of182W/184W and183W/184W by negative thermal ionization mass spectrometry:Per-integration oxide corrections using measured18O/16O.International Journal of Mass Spectrometry,414:80-86
    Carlson RW.2014.Thermal ionization mass spectrometry.In:Holland HD and Turekian KK(eds.).Treatise on Geochemistry.2nd Edition.Amsterdam:Elsevier,337-354
    Chen J,Tang HF,Wang N and Guan J.2013.Progress in analytical methods of tungsten isotope and experimental research on digestion of whole rock samples.Journal of Mineralogy and Petrology,33(3):86-92(in Chinese with English abstract)
    Chu ZY,Yang YH and Qiao GS.2006.A calculation method to eliminate gain effect on isotopic measurement using the virtual amplifier multi-collector mass spectrometer.International Journal of Mass Spectrometry,253(1-2):130-135
    Chu ZY,Yang YH,Guo JH and Qiao GS.2011.Calculation methods for direct internal mass fractionation correction of spiked isotopic ratios from multi-collector mass spectrometric measurements.International Journal of Mass Spectrometry,299(2-3):87-93
    Chu ZY,Li CF,Chen Z,Xu JJ,Di YK and Guo JH.2015.Highprecision measurement of186Os/188Os and187Os/188Os:Isobaric oxide corrections with in-run measured oxygen isotope ratios.Analytical Chemistry,87(17):8765-8771
    Fukai R,Yokoyama T and Kagami S.2017.Evaluation of the long-term fluctuation in isotope ratios measured by TIMS with the static,dynamic,and multistatic methods:A case study for Nd isotope measurements.International Journal of Mass Spectrometry,414:1-7
    Gao HT,Zhao DM,Du AD,Qu WJ and Liu DY.1999.Study on Os-Os dating method.Rock and Mineral Analysis,18(3):176-181(in Chinese with English abstract)
    Halliday AN,Rehkmper M,Lee DC and Yi W.1996.Early evolution of the earth and moon:New constraints from Hf-W isotope geochemistry.Earth and Planetary Science Letters,142(1-2):75-89
    Halliday AN,Lee DC,Christensen JN,Rehkmper M,Yi W,Luo XZ,Hall CM,Ballentine CJ,Pettke T and Stirling C.1998.Applications of multiple collector-ICPMS to cosmochemistry,geochemistry,and paleoceanography.Geochimica et Cosmochimica Acta,62(6):919-940
    Halliday AN and Lee DC.1999.Tungsten isotopes and the early development of the earth and moon.Geochimica et Cosmochimica Acta,63(23-24):4157-4179
    Harper CL,Volkening J,Heumann KG,Shih CY and Weismann H.1991.182Hf-182W:New cosmochronometric constraints on terrestrial accretion,core formation,the astrophysical site of the r-process,and the origin of the Solar System.Abstracts of the Lunar and Planetary Science Conference,22:515-516
    Harper CL and Jacobsen SB.1996.Evidence for182Hf in the early solar system and constraints on the timescale of terrestrial accretion and core formation.Geochimica et Cosmochimica Acta,60(7):1131-1153
    Horan MF,Smoliar MI and Walker RJ.1998.182W and187Re-187Os systematics of iron meteorites:Chronology for melting,differentiation,and crystallization in asteroids.Geochimica et Cosmochimica Acta,62(3):545-554
    Jacobsen SB.2005.The Hf-W isotopic system and the origin of the earth and moon.Annual Review of Earth and Planetary Sciences,33:531-570
    Kleine T,Touboul M,Bourdon B,Nimmo F,Mezger K,Palme H,Jacobsen SB,Yin QZ and Halliday AN.2009.Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets.Geochimica et Cosmochimica Acta,73(17):5150-5188
    Kruijer TS,Kleine T,Fischer-G9dde M,Burkhardt C and Wieler R.2014.Nucleosynthetic W isotope anomalies and the Hf-Wchronometry of Ca-Al-rich inclusions.Earth and Planetary Science Letters,403:317-327
    Kruijer TS,Kleine T,Fischer-G9dde M and Sprung P.2015.Lunar tungsten isotopic evidence for the late veneer.Nature,520(7548):534-537
    Lee DC and Halliday AN.1995.Hafnium-tungsten chronometry and the timing of terrestrial core formation.Nature,378(6559):771-774
    Lee DC and Halliday AN.1996.Hf-W isotopic evidence for rapid accretion and differentiation in the early solar system.Science,274(5294):1876-1879
    Lee DC and Halliday AN.1997.Core formation on mars and differentiated asteroids.Nature,388(6645):854-857
    Lee DC,Halliday AN,Snyder GA and Taylor LA.1997.Age and origin of the moon.Science,278(5340):1098-1103
    Lee DC and Halliday AN.2000.Accretion of primitive planetesimals:Hf-W isotopic evidence from enstatite chondrites.Science,288(5471):1629-1631
    Lee DC.2008.182Hf-182W chronometry and the early evolution history in the acapulcoite-lodranite parent body.Meteoritics&Planetary Science,43(4):675-684
    Lee DC,Halliday AN,Singletary SJ and Grove TL.2009.182Hf-182Wchronometry and early differentiation of the ureilite parent body.Earth and Planetary Science Letters,288(3-4):611-618
    Li CF,Lin YT,Guo JH,Li QL,Li XH and Li XH.2010.Ultra-high precision determination of142Nd/144Nd ratio using thermal ionization mass spectrometry.Chinese Journal of Analytical Chemistry,38(7):989-993(in Chinese with English abstract)
    Liu JG,Touboul M,Ishikawa A,Walker RJ and Pearson DG.2016.Widespread tungsten isotope anomalies and W mobility in crustal and mantle rocks of the Eoarchean Saglek Block,northern Labrador,Canada:Implications for early earth processes and W recycling.Earth and Planetary Science Letters,448:13-23
    Ludwig KR.2008.User’s manual for isoplot 3.70:A geochronological toolkit for Microsoft Excel.Berkeley Geochronology Center,1-72
    Luguet A,Nowell GM and Pearson DG.2008.184Os/188Os and186Os/188Os measurements by negative thermal ionisation mass spectrometry(N-TIMS):Effects of interfering element and mass fractionation corrections on data accuracy and precision.Chemical Geology,248(3-4):342-362
    Mei QF and Yang JH.2018.Hf-W isotopic constraints on early evolution of the earth.Acta Petrologica Sinica,34(1):207-216(in Chinese with English abstract)
    Mundl A,Touboul M,Jackson MG,Day JMD,Kurz MD,Lekic V,Helz RT and Walker RJ.2017.Tungsten-182 heterogeneity in modern ocean island basalts.Science,356(6333):66-69
    QuittéG,Birck JL,Capmas F and Allègre CJ.2002.High precision HfW isotopic measurements in meteoritic material using negative thermal ionisation mass spectrometry(NTIMS).Geostandards and Geoanalytical Research,26(2):149-160
    Rizo H,Walker RJ,Carlson RW,Touboul M,Horan MF,Puchtel IS,Boyet M and Rosing MT.2016.Early earth differentiation investigated through142Nd,182W,and highly siderophile element abundances in samples from Isua,Greenland.Geochimica et Cosmochimica Acta,175:319-336
    Russell WA,Papanastassiou DA and Tombrello TA.1978.Ca isotope fractionation on the earth and other solar system materials.Geochimica et Cosmochimica Acta,42(8):1075-1090
    Sun WD,Peng ZC,Wang ZR and Yin QZ.1997.Oxygen corrections in negative thermal ionization mass spectrometry determination of rhenium and osminum.Journal of Chinese Mass Spectrometry Society,18(3):1-6(in Chinese with English abstract)
    Touboul M and Walker RJ.2012.High precision tungsten isotope measurement by thermal ionization mass spectrometry.International Journal of Mass Spectrometry,309:109-117
    Touboul M,Puchtel IS and Walker RJ.2012.182W evidence for longterm preservation of early mantle differentiation products.Science,335(6072):1065-1069
    Touboul M,Puchtel IS and Walker RJ.2015.Tungsten isotopic evidence for disproportional late accretion to the earth and moon.Nature,520(7548):530-533
    Trinquier A,Touboul M and Walker RJ.2016.High-precision tungsten isotopic analysis by multicollection negative thermal ionization mass spectrometry based on simultaneous measurement of W and18O/16Oisotope ratios for accurate fractionation correction.Analytical Chemistry,88(3):1542-1546
    Upadhyay D,Scherer EE and Mezger K.2008.Fractionation and mixing of Nd isotopes during thermal ionization mass spectrometry:Implications for high precision142Nd/144Nd analyses.Journal of Analytical Atomic Spectrometry,23(4):561-568
    Vockenhuber C,Oberli F,Bichler M,Ahmad I,QuittéG,Meier M,Halliday AN,Lee DC,Kutschera W,Steier P,Gehrke RJ and Helmer RG.2004.New half-life measurement of182Hf:Improved chronometer for the early solar system.Physical Review Letters,93(17):172501
    V9lkening J,K9ppe M and Heumann KG.1991.Tungsten isotope ratio determinations by negative thermal ionization mass spectrometry.International Journal of Mass Spectrometry and Ion Processes,107(2):361-368
    Willbold M,Elliott T and Moorbath S.2011.The tungsten isotopic composition of the earth’s mantle before the terminal bombardment.Nature,477(7363):195-198
    Willbold M,Mojzsis SJ,Chen HW and Elliott T.2015.Tungsten isotope composition of the Acasta Gneiss Complex.Earth and Planetary Science Letters,419:168-177
    Zheng L,Zhi XC and Jin YB.2004.Mass fractionation correction of osmium isotopic compositions in negative thermal ionization mass spectrometric measurement.Journal of Chinese Mass Spectrometry Society,25(4):193-197(in Chinese with English abstract)
    陈娟,唐红峰,王宁,灌瑾.2013.W同位素分析方法进展及全岩样品的消解研究.矿物岩石,33(3):86-92
    高洪涛,赵敦敏,杜安道,屈文俊,刘敦一.1999.锇-锇测年方法研究.岩矿测试,18(3):176-181
    李潮峰,林杨挺,郭敬辉,李秋立,李向辉,李献华.2010.热电离质谱法超高精度测定142Nd/144Nd同位素比.分析化学,38(7):989-993
    梅清风,杨进辉.2018.地球早期演化的Hf-W同位素制约.岩石学报,34(1):207-216
    孙卫东,彭子成,王兆荣,Yin QZ.1997.铼饿负热电离质谱测定中的氧同位素校正.质谱学报,18(3):1-6
    郑磊,支霞臣,靳永斌.2004.负热电离质谱法测量Os同位素组成的质量分馏校正.质谱学报,25(4):193-197

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700