不同时期灌水对冬小麦干热风的防御效应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Defensive effect of irrigation at different stage on hot dry wind stress on winter wheat
  • 作者:赵花荣 ; 任三学 ; 齐月 ; 田晓丽
  • 英文作者:ZHAO Hua-rong;REN San-xue;QI Yue;TIAN Xiao-li;Chinese Academy of Meteorological Sciences;The Institute of Arid Meteorology, China Meteorological Administration/Gansu Key Laboratory of Arid Climatic Change and Reducing Disaster/Key Laboratory of Arid Climatic Change and Disaster Reduction of CMA;China Academy of Meteorological Sciences (Gucheng) Ecological Environment and Agro-meteorology Test Station;
  • 关键词:冬小麦 ; 干热风 ; 灌水时间 ; 灌水 ; 灌水效率 ; 产量
  • 英文关键词:winter wheat;;hot dry wind;;irrigation time;;irrigation amount;;irrigation efficiency;;production
  • 中文刊名:干旱地区农业研究
  • 英文刊名:Agricultural Research in the Arid Areas
  • 机构:中国气象科学研究院;中国气象局兰州干旱气象研究所/甘肃省干旱气候变化与减灾重点实验室/中国气象局干旱气候变化与减灾重点实验室;中国气象科学研究院(固城)生态环境与农业气象试验站;
  • 出版日期:2019-07-10
  • 出版单位:干旱地区农业研究
  • 年:2019
  • 期:04
  • 基金:甘肃省青年科技基金计划项目(17JR5RA344);; 甘肃省气象局气象科研项目(GSMAMs2018-13);; 国家自然科学基金项目(41505098,1775105,41775107);; 国家公益性行业(气象)科研专项(GYHY201506001-2)
  • 语种:中文;
  • 页:64-71
  • 页数:8
  • CN:61-1088/S
  • ISSN:1000-7601
  • 分类号:S512.11
摘要
灾前灌水是防御灾害发生的有效措施,为掌握灌水的关键发育期及适宜灌水量,在防雨棚和自然大田进行冬小麦抽穗期、开花期、灌浆初期灌水试验。结果表明:在开花期,灌水100、150 mm自然大田干热风穗的发生率比遮雨棚降低31.77%、32.85%,而穗粒重自然大田比防雨棚提高12.25%、5.45%;无论开花期还是抽穗~灌浆初期,灌水处理的千粒重均比对照大,防雨棚中随灌水时间推后千粒重逐渐增大,而自然大田以开花期灌水千粒重最大,为47.664 g。灌水100、150 mm处理,灌水效率自然大田均比防雨棚高,且均以开花期灌水效率最高,为4.110 g·m~(-2)·mm~(-1),防雨棚灌水150 mm比灌水100 mm高约0.2 g·m~(-2)·mm~(-1),而自然大田受自然降水补给调节土壤水分,灌水150 mm比灌水100 mm低0.565~1.301 g·m~(-2)·mm~(-1)。灌水对干热风防御效应效果自然大田较防雨棚更为显著,且以开花期灌水效应最为显著。
        Hot dry wind is one of the meteorological factors causing the annual fluctuation of wheat yield. Pre-disaster defense can effectively mitigate the damage caused by disasters. When the hot dry wind occurs, it will cause irreversible physiological harm to the wheat plant and the grain filling in the kernel, and the pre-disaster irrigation is an effective measure to prevent the occurrence of the disaster. In order to master the key development period of irrigation water and appropriate irrigation water, during the heading stage of winter wheat, flowering and milking, the irrigation of 100 mm and 150 mm were respectively tested in the waterproof canopy and natural field. The results showed thatat the flowering stage, the incidence of hot dry air spikes and the grain weight per panicle of 100 mm and 150 mm irrigation fields were about 30% and 3% higher than that of the covered, which was 18.03% and 15.14% lower than that of the control.Regardless of the flowering stage or the heading-filling stage, the 1000-grain weight from the irrigation treatment was significantly greater than that of the control.In the rainproof shed, the 1000-grain weight gradually increased with increasing irrigation time, while the natural field had the largest 1000-grain weight in the flowering stage, which was 47.664 g.The irrigation efficiency was naturally higher than that of the rainproof shed, and the irrigation efficiency was the highest at the flowering stage, which was 4.110 g·m~(-2)·mm~(-1). The irrigation efficiency of the rain shed irrigation of 150 mm was about 0.2 g·m~(-2)·mm~(-1) higher than that with 100 mm, while the natural field was regulated by natural precipitation to regulate soil moisture. The irrigation efficiency of irrigation of 150 mm was 0.565~1.301 g·m~(-2)·mm~(-1) lower than that of 100 mm.The effect of irrigation on the dry and hot air defense effect was obvious, and the natural field was more prominent than the canopy, and the effect was most significant in the flowering period. Therefore, the accurate climate prediction and agricultural meteorological service of hot dry wind should be paid attention to, and it can effectively defend and mitigate the loss of hot dry wind on the winter wheat before the disaster.
引文
[1] 北方小麦干热风科研协作组.小麦干热风[M].北京:气象出版社,1988:256-257.
    [2] 杨玉栋,崔超.小麦生长后期干热风的防御技巧[J].农机科技推广,2010,(6):55-55.
    [3] 张志红,成林,李书玲,等.我国小麦干热风灾害研究进展[J].气象与环境科学,2013,36(2):72-76.
    [4] 中华人民共和国国家统计局.国家统计数据库-年度数据-农业(2011)[EB/OL].[2013-7-5].http:/ /219.235.129.58/re-portYearBrowse.do.
    [5] 赵俊芳,赵艳霞,郭建平,等.过去50年黄淮海地区冬小麦干热风发生的时空演变规律[J].中国农业科学,2012,45(14):2815-2825.
    [6] 成林,张志红,常军.近 47 年来河南省冬小麦干热风灾害的变化分析[J].中国农业气象,2011,32(3):456-460.
    [7] 中华人民共和国气象行业标准.QX/T82-2007.小麦干热风灾害等级[S].北京:气象出版社,2007.
    [8] 陈怀亮,邹春辉,付祥建,等.河南省小麦干热风发生规律研究[J].自然资源学报,2001,16(1):59-64.
    [9] 史印山,尤凤春,魏瑞江,等.河北省干热风对小麦千粒重影响分析[J].气象科技,2007,35(5):699-702.
    [10] 邓振镛,张强,倾继祖,等.气候暖干化对中国北方干热风的影响[J].冰川冻土,2009,31(4):664-671.
    [11] IPCC.Synthesis report of the IPCC fourth assessment re-port 2007[EB/OL].[2013-7-5].http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_synthe-sis_report.htm.
    [12] 邓振镛,王强,张强,等.中国北方气候暖干化对粮食作物的影响及应对措施[J].生态学报,2010,30(22):6278-6288.
    [13] 邬定荣,刘建栋,刘玲,等.近 50 年华北平原干热风时空分布特征[J].自然灾害学报,2012,(05):167-172.
    [14] 杨霏云,朱玉洁,刘伟昌.华北冬麦区干热风发生规律及风险区划[J].自然灾害学报,2013,(03):112-121.
    [15] 李香颜,张金平,陈敏.基于 GIS 的河南省冬小麦干热风风险评估及区划[J].自然灾害学报,2017,(03):063-70.
    [16] 时凤云,徐文国,吴建河,等.濮阳近40年干热风特征和成因分析及防御[J].中国农学通报,2009,25(3):251-254.
    [17] 张建军,崔宝琪,李晶晶.小麦干热风的危害与防御措施[J].安徽农学通报,2009,15(14):238-239.
    [18] 赵娜,刘赟.我国小麦干热风危害及其防御措施研究[J].农业灾害研究,2011,(2):68-73.
    [19] 郭晓丽.干热风对小麦的危害及防御措施[J].现代农业科技,2011,(4):308-308.
    [20] 中国气象局.地面气象观测规范[S].北京:气象出版社,2003:35-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700