人工湿地处理滨海养殖水效果及机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Improving performance and removal mechanism of coastal aquaculture water by constructed wetlands
  • 作者:张饮江 ; 张筱 ; 程梦雨 ; 钟国防 ; 赵志淼
  • 英文作者:ZHANG Yinjiang;ZHANG Xiao;CHENG Mengyu;ZHONG Guofang;ZHAO Zhimiao;College of Marine Ecology and Environment, Shanghai Ocean University;Engineering Research Center for Water Environment Ecology, Shanghai Ocean University;College of Fisheries and Life Science, Shanghai Ocean University;
  • 关键词:人工湿地 ; 养殖水 ; 机理研究 ; BIOLOG ; 主成分分析
  • 英文关键词:constructed wetland;;coastal aquaculture wastewater;;purification mechanism;;BIOLOG;;principal component analysis
  • 中文刊名:上海海洋大学学报
  • 英文刊名:Journal of Shanghai Ocean University
  • 机构:上海海洋大学海洋生态与环境学院;水域环境生态上海高校工程研究中心;上海海洋大学水产与生命学院;
  • 出版日期:2019-07-08 16:08
  • 出版单位:上海海洋大学学报
  • 年:2019
  • 期:05
  • 基金:水体污染控制与治理科技重大专项(2017ZX07205003);; 上海海洋大学博士启动基金(A2-0203-00-100356);; 中国博士后科学基金资助项目(D-8005-18-0068-1/2);; 上海高校智库内涵建设计划(A1-2053-18-0001);; 重庆市教育委员会科学技术研究项目(KJQN 201803811)
  • 语种:中文;
  • 页:4-11
  • 页数:8
  • CN:31-2024/S
  • ISSN:1674-5566
  • 分类号:X714
摘要
滨海养殖废水对河口及近海水质有影响,造成潜在水华和赤潮问题。利用具有生态化、高处理效果的人工湿地处理滨海养殖水。研究不同浓度盐胁迫下人工湿地对各污染物处理效果,确定最耐受盐胁迫浓度。利用污染物去除效率、微生物数量、微生物代谢功能及微生物群落对碳源利用的主成分分析阐述净化机理。研究表明:(1)人工湿地可有效处理滨海养殖水,当HRT=3 d时,人工湿地COD和NH_3-N去除效果佳,出水可达地表水环境质量标准(GB 3838—2002)Ⅲ类水标准。(2)在不同盐胁迫浓度条件下,人工湿地正常运行的最耐受盐胁迫浓度为1%,COD和NH_3-N去除效果改善明显(P<0.05),分别为93.3%和77.12%。(3)人工湿地净化滨海养殖水的主要路径是硝化-反硝化作用,硝化/反硝化细菌在1%盐浓度胁迫下仍可正常发挥作用,盐度耐受力较好,且在盐度影响下微生物利用碳源类型趋于多样化。人工湿地可作为滨海养殖水的生态化处理技术,缓解滨海水域的潜在富营养化问题。
        Potential blooms and red tide in river and sea may be caused by coastal aquaculture wastewater inestuarine and coastal areas. In this study, a type of ecological and efficient constructed wetlands was launched to purify coastal aquaculture wastewater. Optimal salt tolerant content was confirmed at different salt concentration in influent by constructed wetland treatments. The mechanism was indicated by removal efficiency, microorganism quantity, microbial metabolism function and microbial community diversity. The results showed that: Coastal aquaculture wastewater was purified efficiently by constructed wetlands, and the quality of effluent reached class Ⅲ of surface water quality standard(GB 3838—2002); The optimal salt tolerant content was 1 % at the different initiating salinity in influent, and the improved performance of contaminants removal was obvious(P<0.05) with 93.3 % of organic matters removal and 77.12 % of ammonia removal in effluent. The main removal path of coastal aquaculture wastewater in constructed wetlands is nitrification-denitrification, and nitrification/denitrification bacteria can work normally under the stress of 1% salinity. The utilization of carbon source by microorganisms tended to diversify under the influence of salinity. As a result, constructed wetland can be used as a green option for coastal aquaculture wastewater to solve or relieve the potential eutrophication.
引文
[1] 刘长发,晏再生,张俊新,等.养殖水处理技术的研究进展[J].大连水产学院学报,2005,20(2):142-148.LIU C F,YAN Z S,ZHANG J X,et al.Advances intreatment technology of effluent from aquaculture[J].Journal of Dalian Fisheries University,2005,20(2):142-148.
    [2] 路克国.大型藻类在工程治理海水富营养化和抑制病原微生物中的作用[D].青岛:中国科学院研究生院(海洋研究所),2008.LU K G.The Effect of Macroalgaeon removing eutrophication of seawater in enganeering and inhabiting pathogenygerm[D].Qingdao:The Institute of Oceanology,Chinese Academy of Sciences,2008.
    [3] 单宝田,王修林,赵中华,等.海水工厂化养殖废水处理技术进展[J].海洋科学,2002,26(10):36-38.SHAN B T,WANG X L,ZHAO Z H,et al.Advances in research of wastewater treatment technology of marine aquaculture plant[J].Marine Sciences,2002,26(10):36-38.
    [4] 郭姿璇,王群,佘宗莲.盐度对未驯化微生物活性的影响[J].中国环境科学,2017,37(1):181-187.GUO Z X,WANG Q,SHE Z L.Effects of salinity on the activity of non-acclimated biomass[J].China Environmental Science,2017,37(1):181-187.
    [5] SGROI M,PELISSARI C,ROCCARO P,et al.Removal of organic carbon,nitrogen,emerging contaminants and fluorescing organic matter in different constructed wetland configurations[J].Chemical Engineering Journal,2018,332:619-627.
    [6] 许春华,周琪,宋乐平.人工湿地在农业面源污染控制方面的应用[J].重庆环境科学,2001,23(3):70-72.XU C H,ZHOU Q,SONG L P.Application of constructed wetland in agricultural non-point source pollution control[J].Chongqing Environmental Science,2001,23(3):70-72.
    [7] 李振高,骆永明,腾应.土壤与环境微生物研究法[M].北京:科学出版社,2008.LI Z G,LUO Y M,TENG Y.The methods of soil and environmental microbiology[M].Beijing:Science Press,2008.
    [8] ZHAO Z M,SONG X S,WANG W,et al.Influences of iron and calcium carbonate on wastewater treatment performances of algae based reactors[J].Bioresource Technology,2016,216:1-11.
    [9] 高锋,杨朝晖,李晨,等.人工湿地处理含盐生活污水的特性研究[J].环境科学,2012,33(11):3820-3825.GAO F,YANG Z H,LI C,et al.Treatment characteristics of saline domestic wastewater by constructed wetland[J].Environmental Science,2012,33(11):3820-3825.
    [10] 张青松,孟会贤,张连水,等.新型微生态制剂调控水产养殖水质试验[J].河北渔业,2014(8):28-29.ZHANG Q S,MENG H X,ZHANG L S,et al.A new type of micro-ecological preparation for aquaculture water quality[J].Hebei Fisheries,2014(8):28-29.
    [11] VYMAZAL J.Constructed wetlands for wastewater treatment:five decades of experience[J].Environmental Science & Technology,2010,45(1):61-69.
    [12] STEFANAKIS A I,TSIHRINTZIS V A.Effects of loading,resting period,temperature,porous media,vegetation and aeration on performance of pilot-scale vertical flow constructed wetlands[J].Chemical Engineering Journal,2012,181-182:416-430.
    [13] 赵思,江云,纪荣平.垂直流人工湿地净化处理水产养殖废水[J].扬州大学学报(自然科学版),2015,18(4):79-82.ZHAO S,JIANG Y,JI R P.The effect of purifying aquaculture wastewater by vertical flow constructed wetland[J].Journal of Yangzhou University (Natural Science Edition),2015,18(4):79-82.
    [14] LIANG Y X,ZHU H,BA■,et al.Constructed wetlands for saline wastewater treatment:a review[J].Ecological Engineering,2017,98:275-285.
    [15] LIANG Y X,ZHU H,BA■,et al.Removal of nutrients in saline wastewater using constructed wetlands:plant species,influent loads and salinity levels as influencing factors[J].Chemosphere,2017,187:52-61.
    [16] 潘成刚.微生态制剂在水质调节上的应用[J].农技服务,2013,30(7):760.PAN C G.Application of micro-ecological preparations in water quality regulation[J].Agricultural Technology Service,2013,30(7):760.
    [17] DING X W,XUE Y,ZHAO Y,et al.Effects of different covering systems and carbon nitrogen ratios on nitrogen removal in surface flow constructed wetlands[J].Journal of Cleaner Production,2018,172:541-551.
    [18] FERNáNDEZ-SOTO A,LANZETTA K M,YAHIL A.A new catalog of photometric red shifts in the Hubble Deep Field[J].The Astrophysical Journal,1999,513(1):34-50.
    [19] 邵雪.耐盐菌的特性强化及其研究[D].沈阳:东北大学,2012.SHAO X.Strengthening methods of halo-tolerant bacteria properties and research[D].Shenyang:Northeastern University,2012.
    [20] ZHAO Y J,LIU B,ZHANG W G,et al.Effects of plant and influent C∶N∶ P ratio on microbial diversity in pilot-scale constructed wetlands[J].Ecological Engineering,2010,36(4):441-449.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700