蛹虫草聚酮合酶基因的多样性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Diversity of Polyketide Synthase(PKS) Gene in Cordyceps militaris
  • 作者:原晓龙 ; 李云琴 ; 王毅
  • 英文作者:YUAN Xiao-long;LI Yun-qin;WANG Yi;Yunnan Academy of Forestry;Key Laboratory for Conservation of Rare,Endangered & Endemic Forest Plants,National Forestry and Glassland Administration,Yunnan Provincial Key Laboratory of Cultivation and Exploitation of Forest Plants;
  • 关键词:蛹虫草 ; 基因组挖掘 ; 聚酮合酶 ; 基因表达 ; 聚酮类化合物
  • 英文关键词:Cordyceps militaris;;genome-mining;;polyketide synthase(PKS);;gene expression;;polyketide compounds
  • 中文刊名:西部林业科学
  • 英文刊名:Journal of West China Forestry Science
  • 机构:云南省林业科学院;国家林业和草原局云南珍稀濒特森林植物保护和繁育实验室/云南省森林植物培育与开发利用重点实验室;
  • 出版日期:2019-03-28 17:20
  • 出版单位:西部林业科学
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金项目(31860177);; 云南省应用基础研究计划面上项目(2016FB055)
  • 语种:中文;
  • 页:101-107+117
  • 页数:8
  • CN:53-1194/S
  • ISSN:1672-8246
  • 分类号:S567.3
摘要
以蛹虫草的菌丝体为材料,利用基因组挖掘的方式从蛹虫草基因组中获得其聚酮合酶(Polyketide synthase,PKS)基因,对这些PKS基因进行生物信息学分析以推断它们的功能,并检测它们在不同培养基上的表达情况。结果表明:蛹虫草中含有13个PKS基因(CmPKS 1-13),包括2个非还原型聚酮合酶(Non-reducing PKS,NR-PKS),5个部分还原的聚酮合酶(Partial-reducing PKS,PR-PKS),6个高度还原型聚酮合酶(Highly reducing PKS,HR-PKS);聚类分析显示CmPKS 1、CmPKS 3可能参与链格孢吡喃酮(alternapyrone),CmPKS 4可能参与黄曲霉素,CmPKS 5可能参与美伐他汀,CmPKS 6可能参与分生孢子色素,CmPKS 8可能参与伊快霉素的生物合成,其余PKS与生物合成未知化合物的PKS聚为一支;半定量PCR显示CmPKS 7和CmPKS 9在4种培养基上均强烈表达;CmPKS 3、CmPKS 6在4种培养基上微弱表达;CmPKS 10、CmPKS 11和CmPKS 12只在GL培养基上强烈表达,在其余3种培养基上微弱表达;CmPKS 1和CmPKS 4只在GL培养上微弱表达,CmPKS 8仅在GS培养基上微弱表达;CmPKS 2、CmPKS 5和CmPKS 13在检测的培养基中都不表达。本研究为进一步异源表达蛹虫草中的PKS基因及其功能鉴定、具新颖结构聚酮化合物的发掘奠定基础。
        The mycelium of Cordyceps militaris was used as the material,the present experiment has obtained some polyketide synthase(PKS) gene from the genome of C.militaris with the method of genome-mining,and carried a bioinformatics analysis of these PKS genes to perform their function,and detected these PKS gene expression in the different medium.The results showed that there were 13 PKS(CmPKS 1-13) genes in the genome of C.militaris,including 2 non-reducing PKS(NR-PKS),5 partial reducing PKS(PR-PKS),6 highly reducing PKS(HR-PKS);the phylogenetic analysis revealed CmPKS 1,CmPKS 3 could involve in the biosynthesis of alternapyrone, CmPKS 4 could involve sterigmatocystin, CmPKS 5 could involve mevastatin,CmPKS 6 could involve conidial yellow pigment, CmPKS 8 could involve equisetin,and other PKS in C.militaris that could involve some compounds were unkow;the semi-quantitative RT-PCR revealed CmPKS 7 and CmPKS 9 strongly expressed in 4 medium,CmPKS 3 and CmPKS 6 slightly expressed in all 4 medium, CmPKS 10;CmPKS 11 and CmPKS 12 only strongly expressed in GL,and slightly in other 3 medium;CmPKS 1,CmPKS 4 only expressed in GL,and CmPKS 8 only slightly expressed in GS;CmPKS 2,CmPKS 5 and CmPKS 13 not completely expressed in 4 medium.This study provides some important basis for heterologously expression of the PKS gene in C.militaris,the identification of gene function,and for finding a new putative structure of polyketide.
引文
[1]郑壮丽,黄春花,梅彩英,等.蛹虫草国内外研究的新进展[J].环境昆虫学报,2011,33(2):225-233.
    [2]Nag T B,Wang H.Pharmacological actions of Cordyceps,a prized folk medicine[J].Journal of Pharmacy & Pharmacology,2005,57(12):1509-1519.
    [3]肖亦农,韩梅,赵春燕.不同培养基对蛹虫草子实体甘露醇、多糖和矿质元素含量的影响[J].沈阳农业大学学报,2009,40(2):227-229.
    [4]曾宏彬,宋斌,李泰辉.蛹虫草研究进展及其产业化前景[J].食用菌学报,2011,18(2):70-74.
    [5]王升厚,牛世莉,徐方旭,等.基于代谢组学的功能性蛹虫草成分研究[J].微生物学杂志,2018,38(2):1-7.
    [6]Xiao J H,Zhong J J.Secondary metabolites from Cordyceps species and their antitumor activity studies[J].Recent Patents on Biotechnology,2007,1(2):123-137.
    [7]Xia Y,Luo F,Shang Y, et al.Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin[J].Cell Chemical Biology,2017,24(12):1479-1489.
    [8]陈俐彤,曹红峰,黄文芳.蛹虫草的化学成分、药效及应用[J].现代食品科技,2005,21(3):192-194.
    [9]Zhang C,Ke D,Duan Y, et al.The combinatorial biosynthesis of“unnatural”products with polyketides[J].Transactions of Tianjin University,2018(15/16):1-12.
    [10]Cox R J.Polyketides,proteins and genes in fungi:programmed nano-machines begin to reveal their secrets[J].Organic & Biomolecular Chemistry,2007,5(13):2010-2026.
    [11]Kroken S,Glass N L,Taylor J W, et al.Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes[J].Proceedings of the National Academy of Sciences of the United States of America,2003,100(26):15670.
    [12]董高超,刘震,莫朕,等.基因组挖掘在天然产物研究中的应用进展[J].化学与生物工程,2017,34(2):10-12.
    [13]Robbel L,Knappe T A,Linne U, et al.Erythrochelin-a hydroxamate-type siderophore predicted from the genome of Saccharopolyspora erythraea[J].The Federation of European Biochemical Societies Journal,2010,277(3):663-676.
    [14]K■nig C C,Scherlach K,Schroeckh V, et al.Bacterium induces cryptic meroterpenoid pathway in the pathogenic fungus Aspergillus fumigatus[J].Organic & Biomolecular Chemistry,2013,14(8):938-942.
    [15]Medema M H,Blin K,CimertmancicP, et al.AntiSMASH:rapid identification,annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences[J].Nucleic Acids Research,2011,39(S2):W339-W346.
    [16]陈思涵,钱靖,彭杰,等.农杆菌介导的外源基因在本氏烟中瞬时表达体系优化研究[J].西南林业大学学报,2018,38(4):6-11.
    [17]原晓龙,赵能,陈剑,等.哈茨木霉基因组中基因多样性的生物信息学分析[J].西部林业科学,2017,46(4):7-12.
    [18]Zuloaga F O,Salariato D L,Scataglini A.Molecular phylogeny of Panicum s.str.(Poaceae,Panicoideae,Paniceae)and insights into its biogeography and evolution [J].Plos One,2018,13(2):e0191529.DOI:10.1371/journal.pone.0191529
    [19]Bergmann S,Schumann J,Scherlach K, et al.Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans[J].Nature Chemical Biology,2007,3(4):213-217.
    [20]Kirimura K,Watanabe S,Kobayashi K.Heterologous gene expression and functional analysis of a type III polyketide synthase from Aspergillus niger NRRL 328[J].Biochemicaland Biophysical Research Communications,2016,473(4):1106-1110.
    [21]Yuan C,Guo Y H,Wang H Y, et al.Allelopathic polyketides from an endolichenic fungus Myxotrichum sp.by using OSMAC strategy[J].Scientific Reports,2016,6:19350.
    [22]Kinoshita Y,Yamamoto Y,Kurokawa T, et al.Influences of nitrogen sources on usnic acid production in a cultured mycobiont of the lichen Usnea hirta (L.)Wigg[J].Journal of the Agricultural Chemical Society of Japan,2001,65(8):1900-1902.
    [23]王毅,周旭,许宰铣,等.长松萝中一个聚酮合酶基因簇的克隆和鉴定[J].微生物学报,2014,54(7):770-777.
    [24]李菲,王忠,卞文印,等.5种氮源对蛹虫草生长及其质量的影响[J].福建农业科技,2018(1):4-6.
    [25]任昕雯,李宇轩,吴兆琦.液体发酵条件对蛹虫草产虫草素的影响[J].陕西农业科学,2018,64(4):58-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700