褐飞虱应对水稻抗虫物质麦黄酮刺激的唾液蛋白组学响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Salivary proteomics response of rice brown planthopper Nilaparvata lugens(Stål) to stimulation of tricin, a key rice insect-resistant compound
  • 作者:巩固 ; 崔百元 ; 戴彰言 ; 贝锦龙 ; 李怡峰 ; 张扬 ; 吴伟坚 ; 张振飞
  • 英文作者:GONG Gu;CUI Bai-Yuan;DAI Zhang-Yan;BEI Jing-Long;LI Yi-Feng;ZHANG Yang;WU Wei-Jian;ZHANG Zhen-Fei;Agriculture College of South China Agricultural University;Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences;Guangdong Provincial Key Laboratory of High Technology for Plant Protection;Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences;
  • 关键词:褐飞虱 ; 抗虫次生代谢物 ; 麦黄酮 ; 刺激反应 ; 蛋白质组
  • 英文关键词:Nilaparvata lugens;;insect-resistant metabolites;;tricin;;stimulation response;;proteomics
  • 中文刊名:环境昆虫学报
  • 英文刊名:Journal of Environmental Entomology
  • 机构:华南农业大学农学院;广东省农业科学院植物保护研究所;广东省植物保护新技术重点实验室;广东省农业科学院农业生物基因研究中心;
  • 出版日期:2019-01-25
  • 出版单位:环境昆虫学报
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金青年项目(31501633);; 广东省省级科技计划项目(2016B020202002)
  • 语种:中文;
  • 页:53-64
  • 页数:12
  • CN:44-1640/Q
  • ISSN:1674-0858
  • 分类号:S435.112.3
摘要
为研究褐飞虱响应麦黄酮刺激的分子机理,应用差异蛋白质组学方法分析褐飞虱唾液腺响应麦黄酮刺激处理的蛋白质组变化趋势。结果表明,麦黄酮处理褐飞虱6 h差异蛋白数量90个,其中上调蛋白62个,下调蛋白28个;处理褐飞虱24 h差异蛋白数量27个,其中上调蛋白10个,下调蛋白17个,6 h的差异蛋白数量显著大于24 h。麦黄酮处理可以引起褐飞虱唾液腺丝氨酸蛋白酶及其同系物产生显著变化。通过对差异蛋白进行GO功能分析和KEGG通路分析,发现麦黄酮处理褐飞虱引起褐飞虱唾液腺蛋白变化主要集中在应激蛋白和代谢这两大类上,分别占了所有差异蛋白的50%以上,麦黄酮处理引起褐飞虱唾液响应蛋白主要参与了氨基酸代谢、唾液分泌系统、能量代谢、碳水化合物代谢等通路。
        In order to research the molecular mechanism of rice brown planthopper Nilaparvata lugens response to tricin stimulation, we analyzed the salivary proteomic response of N.lugens to tricin stimulation by using differential proteomic methods. The results showed that the differential proteins in N.lugens salivary treated with tricin for 6 hours reaches 90(including 62 up-regulated proteins and 28 down-regulated proteins). The differential proteins inside the N.lugens sample treated with tricin for 24 hours significantly less than treated for 6 hours, and the number of different protein just was 27(including 10 up-regulated proteins and 17 down-regulated proteins). Tricin stimulation can make serine protease(SP) and its homologous(SPH) inside the rice brown planthopper salivary gland changing obviously. Through by GO function analysis and KEGG pathway analysis towards the differential proteins, we found that the differential proteins in N.lugens salivary gland mainly belonged to stress proteins and metabolism proteins, and total of their ratio more than 50 percent. The N.lugens salivary gland proteins responsed to tricin stimulation participating the following pathways, such as amino metabolism, salivary secretion system, energy metabolism, carbohydrate metabolism, and so on.
引文
Adjei AF, Kim CTM, Ishikawa M,et al. Isolation and identification of the probing stimulants in the rice [Oryza sativa] plant for the white-back planthopper, Sogatella furcifera (Homoptera: Delphacidae) [J]. Bioscience, Biotechnology and Biochemistry, 2000, 64 (2): 443-446.
    Bao YY, Qin X, Yu B,et al. Genomic insights into the serine protease gene family and expression profile analysis in the planthopper, Nilaparvata lugens [J]. BMC Genomics, 2014, 15: 507-519.
    Chen XN, Wu JC, Ma F,et al. Edited. Studies and Control on Rice Brown Planthopper Nilaparvata lugens [M]. Beijing: Agricultural Press of China, 2003. [程遐年, 吴进才, 马飞, 等编著. 褐飞虱研究与防治 [M]. 北京: 中国农业出版社, 2003]
    Chung IM, Hahn SJ, Ahmad A. Confirmation ofpotential herbicidal agents in hulls of rice,Oryza sativa [J]. Journal of Chemical Ecology, 2005, 31 (6): 1339-1352.
    Du B, Wei Z, Wang ZQ,et al. Phloem-exudate proteome analysis of response to insect brown plant-hopper in rice [J]. Journal of Plant Physiology, 2015, 183: 13-22.
    Golawska S, Lukasik I, Kapusta I,et al. Do the contents of luteolin, tricin, and chrysoeriol glycosides inalfalfa (Medicago sativa L.) affect the behavior of pea aphid (Acyrthosiphon pisum) [J]. Polish Journal of Environment Studies, 2012, 21: 1613-1619.
    Hattori M, Komatsu S, Noda H,et al. Proteome analysis of waterysaliva secreted by green rice leafhopper, Nephotettix cincticeps [J]. PLoS ONE, 2015, 10: e0123671.
    Hao PY, Liu CX, Wang YY,et al. Herbivore-induced callose deposition on the sieve platesof rice: An important mechanism for host resistance [J]. Plant Physiology, 2008, 146: 1810-1820.
    He WQ, Yang M, Li ZH,et al. High levels of siliconprovided as a nutrient in hydroponic culture enhances rice plant resistance to brown planthopper [J]. Crop Protection, 2015, 67: 20-25.
    Ji R, Yu H, Fu Q,et al. Comparative transcriptome analysis of salivary glands of two populations of rice brown planthopper, Nilaparvata lugens, that differ in virulence [J]. PLoS ONE, 2013, 8: e79612.
    Kong CH, Xu XH, Zhou B,et al. Two compounds from allelopathic rice accession and their inhibitory activity on weeds and fungal pathogens [J]. Phytochemistry, 2004, 65 (8): 1123-1128.
    Konishi H, Noda H, Tamura Y,et al. Proteomic analysis of the salivary glands of the rice brown planthopper, Nilaparvata lugens (St?l) (Homoptera: Delphacidae) [J]. Applied Entomology and Zoology, 2009, 44 (4): 525-534.
    Ling B, Dong HX, Zhang MX,et al. Resistant evaluation of rice tricin on rice brown planthopper [J]. Acta Ecological Sinica, 2007, 27 (4): 1300-1307. [凌冰, 董红霞, 张茂新, 等. 水稻麦黄酮对褐飞虱的抗性潜力 [J]. 生态学报, 2007, 27 (4): 1300-1307]
    Liu C, Hao F, Hu J,et al. Revealing different systems responses to brown planthopper infestation for pest susceptible and resistant rice plants with the combined metabonomic and gene-expression analysis [J]. Journal of Proteome Research, 2010, 9 (12): 67, 74-85.
    Liu XQ, Zhou HY, Zhao J,et al. Identification of the secreted watery saliva proteins of the rice brown planthopper, Nilaparvata lugens (St?l) by transcriptome and shotgun LC-MS/MS approach [J]. Journal of Insect Physiology, 2016, 89: 60-69.
    Matsumura M, Takeuchi H, Satoh M,et al. Species-specific insecticide resistance to imidacloprid and fipronil in the rice planthoppers Nilaparvata lugens and Sogatella furcifera in East and Southeast Asia [J]. Pest Management Science, 2008, 64: 1115-1121.
    Moheb A, Grondin M, Ibrahim RK,et al. Winter wheat hull (husk) is a valuable source for tricin, a potential selective cytotoxic agent [J]. Food Chemistry, 2013, 138 (2-3): 931-937.
    Simmonds MSJ. Flavonoid-insect interactions: recent advances in our knowledge [J].Phytochemistry, 2003, 64: 21-30.
    Sogawa K. The rice brown planthopper:Feeding physiology and host plant interactions [J]. Annual Review of Entomology, 1982, 27: 49-73.
    Stochmal A, SimonetAM, Macias FA,et al. Alfalfa (Medicago sativa L.) flavonoids. 2. Tricin and chrysoeriol glycosides from aerial parts [J]. Journal of Agricultural and Food Chemistry, 2001, 49 (11): 5310-5314.
    Ton JES, van der Hulten M, van Pozo M,et al. Priming as a mechanism behind inducedresistance against pathogens, insects and abiotic stress [J]. IOBC/WPRS Bulletin, 2009, 44: 3-13.
    Velusamy R, Heinrichs EA. Electronic monitoring of feeding behavior of Nilaparvata lugens (Homoptera: Delphacidae) on resistant and susceptible rice cultivars [J]. Environment Entomology, 1986, 15: 678-682.
    Zhang ZF, Cui BY, Zhang Y. Electricalpenetration graphs show that tricin is a key secondary metabolite of rice inhibiting the phloem feeding of brown planthopper Nilaparvata lugens (St?l) [J]. Entomologia Experimentalis et Applicata, 2015, 156: 14-27.
    Zhang ZF, Cui BY, Yan SJ,et al. Evaluation of tricin, a stylet probing stimulant of brown planthopper, in infested and non-infested rice plants [J]. Journal of Applied Entomology, 2017, 141 (5): 393-401.
    Zou Z, Lopez DL, Kanost MR,et al. Comparative analysis of serine protease-related genes in the honey bee genome: Possible involvement in embryonic development and innate immunity [J]. Insect Molecular Biology, 2006, 15 (5): 603-614.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700