大落差原油管道投产排水过程研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Drainage Process for Crude Oil Production Using Pipeline with Large Drop-in-height
  • 作者:刘恩斌 ; 马茜 ; 黎春 ; 向敏 ; 黄立宇
  • 英文作者:LIU Enbin;MA Xi;LI Chun;XIANG Min;HUANG Liyu;School of Petroleum Engineering,Southwest Petroleum University;Beijing Oil and Gas Pipeline Control Center,PetroChina;Southwest Pipeline Company,PetroChina;
  • 关键词:大落差 ; 输油管道 ; U型管段 ; 排水量 ; 泄流孔径
  • 英文关键词:large drop-in-height;;oil pipeline;;U-shaped pipe section;;water displacement;;diameter of leakage aperture
  • 中文刊名:西南石油大学学报(自然科学版)
  • 英文刊名:Journal of Southwest Petroleum University(Science & Technology Edition)
  • 机构:西南石油大学石油与天然气工程学院;中国石油北京油气调控中心;中国石油西南管道公司成都分控中心;
  • 出版日期:2019-01-09 16:31
  • 出版单位:西南石油大学学报(自然科学版)
  • 年:2019
  • 期:01
  • 基金:国家安全生产监督管理总局项目(sichuan-0013-2016AQ);; 四川省应用基础研究项目(19YYJC1078)
  • 语种:中文;
  • 页:159-167
  • 页数:9
  • CN:51-1718/TE
  • ISSN:1674-5086
  • 分类号:TE973
摘要
针对最大相对高差达1 432.64 m且含大落差"U"型管段的某原油管线在油顶水投产过程中,原油与水的密度差导致油头行进停滞的问题,提出了在油水界面点附近的阀室,利用压力泄放阀排水泄压的解决方式,基于OLGA多相流瞬态模拟方法,以实际情况为例,对大落差管段的气顶水排水过程进行仿真研究。以泄流孔径为变量,重点研究了流量、压力随时间的变化规律,得到一系列可选泄流孔径及其相应的排水量、流量、压力等随时间变化的关系曲线等。结果表明,选定管段(容量约为6 376.98 m~3)最大排水量可达3 375 m~3,并从经济、安全、有效3个方面分析选出最佳泄流孔径为90~110 mm,与实际情况基本吻合,为解决投产过程中出现类似的异常工况提供实施依据。
        For oil-after-water commissioning that involves a maximum drop-in-height of 1432.64 m and uses a crude oil pipeline containing a U-shaped section with a large drop-in-height, the density difference between crude oil and water leads to stagnation issues in the oil head. To resolve this problem, we proposed to drain the pipeline and release pressure using a pressure relief valve installed in the valve chamber near the oil-water interfacial point. Based on the OLGA multiphase flow transient simulation method and taking the actual situation as an example, we simulated the gas-driven water drainage process in the pipe section with a large drop-in-height. Specifically, the simulation focused on analyzing the change in flow rate and pressure over time with varying diameters of the leakage aperture. A series of available sizes of the leakage apertures and corresponding changes in the displacement, flow, and pressure over time were obtained from the simulation. The results demonstrate that the maximum displacement in the selected pipe section(capacity≈6 367.98 m~3) can reach 3 375 m3. From the perspectives of economy, safety and effectiveness,the best leakage aperture range was found to be 90~110 mm. This number was consistent with that in the actual situation. This study provides a practical basis for alleviating similar abnormal conditions in real production processes.
引文
[1] EL-OUN Z. Gas-liquid two-phase flow in pipelines[C].SPE 20645-MS, 1990. doi:10.2118/20645-MS
    [2] GUO Liejin, LI Guangjun, CHEN Xuejun. A linear and non-linear analysis on interfacial instability of gas-liquid two-phase flow through a circular pipe[J]. International Journal of Heat&Mass Transfer,2002,45(7):1525-1534.doi:10.1016/S0017-9310(01)00247-2
    [3] TAITEL Y, BARNEA D, BRILL JP. Stratified three phase flow in pipes[J]. International Journal of Multiphase Flow,1995.21(1):53-60. doi:10.1016/0301-9322(94)00058-R
    [4] SALHI Y,SI-AHMED E K, LEGRAND J, et al. Stability analysis of inclined stratified two-phase gas-liquid flow[J]. Nuclear Engineering&Design, 2010, 240(5):1083-1096. doi:10.1016/j.nucengdes.2009.12.027
    [5]赵铎.水平管内气液两相流流型数值模拟与实验研究[D].东营:中国石油大学(华东),2007. doi:10.7666/-d.y1214163ZHAO Duo. Numerical simulation and experiment research on flow pattern of gas-liquid flow in horizontal pipe[D].Dongying:China University of Petroleum(East China),2007. doi:10.7666/dy 1214163
    [6]刘定智.多相混输技术的研究及其座用[D].成都:西南石油学院,2003.LIU Dingzhi. Research of multiphase mixture transportation techniques and its applications[D]. Chengdu:Southwest Petroleum Institute, 2003.
    [7] KONG R, KIM S. Characterization of horizontal air-water two-phase flow[J]. Nuclear Engineering&Design, 2016,312(6):266-276. doi:10.1016/j.nucengdes.2016.0.6.016
    [8] GUO B, SONG S, CHACKO J. et al. Gas-liquid multiphase flow in pipeline-Offshore pipelines[M]. 2014. doi:10.1016/B978-075067847-6/50074-3
    [9] MANABE R, TOCHIKAWA T, TSUKUDAM. et al. Experimental and modeling studies of two-phase flow in pipelines[J]. SPE37017-PA, 1997. doi:10.2118/37017-PA
    [10] MASELLA J M.TRAN Q H.FERRE D, et al. Transient simulation of two-phase flows in pipes[J]. International Journal of Multiphase Flow, 1998, 24(5):739-755. doi:10.1016/S0301-9322(98)00004-4
    [11] ISSA R I, KEMPF M H W. Simulation of slug flow in horizontal and nearly horizontal pipes with the two-fluid model[J]. International Journal of Multiphase Flow, 2003,29(1):69-95. doi:10.10161/S0301-9322(02)00127-1
    [12] BONIZZI M.ISSA R I. A model for simulating gas bubble entrainment in two-phase horizontal slug flow[J].International Journal of Multiphase Flow,2003, 29(11):1685-1717. doi:10..1016/j.ijmultiphaseflow.2003.09.001
    [13] OMGBA-ESSAMA C. Numerical modelling of transient gas-liquid flows(Application to stratified and slug flow regimes)[D]. Bedfordshire:Cranfield University, 2004.
    [14] FIGUEIREDO A B,BAPTISTA R M,RACHID F B D F,et al. Numerical simulation of stratified-pattern two-phase flow in gas pipelines using a two-fluid model[J]. International Journal of Multiphase Flow; 2017, 88:30-49. doi:10.1016/j. ij multiphaseflow.2016.09.016
    [15] LOILIER P,OMGBA-ESSAMA C,THOMPSON C, Numerical experiments of two-phase flow in pipelines with a two-fluid compressible model[C]//12th International Conference in Multiphase Production Technology, Barcelona,Spain,2005.
    [16] ISHII M, MISHIMA K. Two-fluid model and hydrodynamic constitutive relations[J]. Nuclear Engineering&Design, 1984, 82(2):107-126. doi:10.1016/0029-5493(84)90207-3
    [17] SIMOES E F, CARNEIRO J N E, NIECKELE A O. Numerical prediction of non-boiling heat transfer in horizontal stratified and slug flow by the two-fluid model[J]. International Journal of Heat&Fluid Flow, 2014.47:135-145.doi:10.1016/j.ij heatfluidflow.2014.03.005
    [18] SAUREL R, ABGRALL R. A multiphase Godunov method for compressible multi-fluid and multiphase flows[J].Journal of Computational Physics, 1999.150(2):425-467.doi:10.1006/jcph.1999.6187
    [19] SAUREL R, MeTAYER O L, MASSONI J. et al. Shock jump relations for multiphase mixtures with stiff mechanical relaxation[J]. Shock Waves, 2007.16(3):209-232. doi:10.1007/s00193-006-0065-7
    [20] EMONOT P, SOUYRI A, GANDRILLE J L, et al. A new system code for thermal-hydraulics in the context of the NEPTUNE project[J]. Nuclear Engineering&Design,2011, 241(11):4476-1481. doi:10.1016/j.nucengdes.-2011.04.049
    [21] FEIC,SHAN J,PAN W U,et al. Analysis of virtual mass force and interfacial pressure on the well-posedness of the two-fluid six-equation model[C]//8~(th)International Symposium on Symbiotic Nuclear Power Systems for 21~(st)Century, 2016.
    [22] FURFARO D, SAUREL R. A simple HLLC-type Riemann solver for compressible non-equilibrium two-phase flows[J]. Computers&Fluids, 2015, 111:159-178. doi:10.1016/j.compfluid.2015.01.016
    [23] HUANG Shanfang, ZHANG Bingdong, LU Jun, et al. Study on flow pattern maps in hilly-terrain air-water-oil threephase flows[J]. Experimental Thermal&Fluid Science, 2013.47(5):158-171. doi:10.1016/j.expthermflusci.-2013.01.011
    [24] KUSHNIR R.SEGAL V,ULMANN A, et al. Closure relations effects on the prediction of the stratified twophase flow stability via the two-fluid model[J]. International Journal of Multiphase Flow, 2017, 97:78-93. doi:10.1016/j.ijmultiphaseflow.2017.07.010
    [25] LEE S J, LEE J HL KIM B J. Improvement of the two-fluid momentum equation using a modified Reynolds Stress model for horizontal turbulent bubbly flows[J]. Chemical Engineering Science, 2017, 173:208-217. doi:10.10161/-j.ces.2017.07.038
    [26] LIU Xianfei, ZHAO Donghai, LIU Yifeng, et al. Numerical analysis of the two-phase flow characteristics in vertical downward helical pipe[J]. International Journal of Heat&Mass Transfer; 2017, 108:1947-1959. doi:10.-1016/j. ij heatmasstransfer.2017.01.056
    [27] Schlumberger. Dynamic multiphase flow simulator[R].Schlumberger User/s Manual.2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700