酶法技术在发酵类制药中的研究与应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research and application of enzymatic catalysis technology in fermentative pharmaceuticals
  • 作者:范宜晓 ; 王学恭 ; 刘庆芬
  • 英文作者:FAN Yixiao;WANG Xuegong;LIU Qingfen;CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences;University of Chinese Academy of Sciences;Chinese Pharmaceutical Enterprises Association;
  • 关键词:发酵类制药 ; 酶催化 ; β-内酰胺类抗生素 ; 维生素C ; 他汀类药物
  • 英文关键词:fermentative pharmaceuticals;;enzymatic catalysis;;β-lactam antibiotic;;vitamin C;;statin drugs
  • 中文刊名:生物产业技术
  • 英文刊名:Biotechnology & Business
  • 机构:中国科学院过程工程研究所,绿色过程与工程重点实验室;中国科学院大学;中国医药企业管理协会;
  • 出版日期:2019-03-15
  • 出版单位:生物产业技术
  • 年:2019
  • 期:02
  • 基金:水体污染控制与治理科技重大专项(2017ZX07402003);; 国家自然科学科学基金(21676272);; 中国科学院重点部署项目(ZDRW-ZS-2016-5-3)
  • 语种:中文;
  • 页:39-49
  • 页数:11
  • CN:11-5606/Q
  • ISSN:1674-0319
  • 分类号:TQ460.6
摘要
绿色发展已成为我国的基本国策,我国作为原料药制造大国,传统的生产方式"三废"排放量大,使制药工业面临严峻的环保问题挑战,发展清洁生产技术是解决制药工业可持续发展的关键。酶催化技术具有选择性高、效率高、污染低等优势,是绿色制药技术的重要发展方向,以绿色酶法技术替代高污染的化学法技术备受关注。针对发酵类制药产品,包括β-内酰胺类抗生素中间体及其衍生原料药、维生素C衍生物和他汀类药物,总结了酶法技术的研究与应用进展,并对其未来发展进行了展望。
        Green development has become a basic state policy of China. As a major manufacturing country of active pharmaceutical ingredient(API), China's pharmaceutical industry is facing seriously environmental challenges due to huge amount of "three wastes" generated from traditional production process. The development of clean production technology is the key to support the sustainable development of Chinese pharmaceutical industry. Enzymatic catalysis technology has advantages such as high selectivity, high efficiency and low pollution, and it is considered as an important development direction of green pharmaceutical technology. In recent years, the replacement of highly polluting chemical synthesis by green enzymatic synthesis has been attracted increasingly. This paper summarized the progress of research and application of enzymatic catalysis technology in fermentative pharmaceuticals including β-lactam antibiotic intermediates and their derivative APIs, vitamin C derivatives and statins. Furthermore, the perspective of this technology was provided.
引文
[1] SHELDON R A. The E factor:fifteen years on[J]. Green Chemistry,2007, 9(12):1273-1283.
    [2]刘庆芬,周畅.一种抗生素发酵菌渣固化脱水的方法:中国,201511006120.3[P]. 2017. 07. 07.
    [3] WOODLEY J M. New opportunities for biocatalysis:making pharmaceutical processes greener[J]. Trends in Biotechnology,2008, 26(6):321-327.
    [4]孙天才.6-APA制备方法的研究进展[J].河北化工,2011,34(4):21-22.
    [5]刘越,王静康.7-氨基去乙酰氧基头孢烷酸生产工艺研究进展[J].精细化工中间体,2003, 33(3):1-3.
    [6]白金龙.7-AVCA与7-ACCA的合成工艺研究[D].石家庄:河北科技大学,2010.
    [7]谭强,邓超澄,韦海宏,等.7-氨基头孢烷酸的制备工艺研究进展[J].现代化工,2012, 32(4):15-19.
    [8]李广斌.阿莫西林(氨苄西林)的工艺改进[D].济南:山东大学,2006.
    [9]李文杰,赵南,胡文彩.头孢氨苄工艺改进[J].广州化工,2016, 4(4):74-75.
    [10]黄若春,李楣高,黄懿珊.头孢羟氨苄的合成[J].中国医药工业杂志,1990, 21(8):343-345
    [11]陈宁.头孢拉定的合成研究[J].广东化工,2010, 37(11):62-63.
    [12]杨晓章.头孢克洛的合成[D].杭州:浙江大学,2007.
    [13]刘长波,高瑞昶.L-抗坏血酸棕榈酸酯的合成研究进展[J].中国油脂,2003, 28(10):46-49.
    [14]杨仲毅,甘春晖.辛伐他汀的生物合成[J].生物工程学报,2008,24(3):349-354.
    [15] SELF D A, KAY G, LILLY M D, et al. The conversion of benzyl penicillin to 6-aminopenieillanie acid using an insoluble derivative of penicillin amidase[J]. Biotechnology and Bioengineering,1969, 11(3):337-348.
    [16] PARMAR A, KUMAR H, MARWAHA S S, et al. Advances in enzymatic transformation of penicillins to 6-aminopenicillanic acid(6-APA)[J]. Biotechnology Advances, 2000, 18(4):289-301.
    [17]张业旺,谭强,刘瑞江,等.青霉素酰化酶制备6-APA的研究进展[J].中国抗生素杂志,2008, 33(7):385-391.
    [18] FONSECA L P, CARDOSO J P, CABRAL J M S. Immobilization studies of an industrial penicillin acylase preparation on a silica carrier[J]. Journal of Chemical Technology&Biotechnology, 1993,58(1):27-37.
    [19] OSPINA S S, LOPEZ-MUNGUIA A, GONZALEZ R L, et al.Characterization and use of a penicillin acylase biocatalyst[J]. Journal of Chemical Technology&Biotechnology, 1992, 53(2):205-213.
    [20] BRODELIUS P. Industrial applications of immobilized biocatalysts[M]. Heidelberg:Springer, 1978:75-129.
    [21] WARBURTON D, DUNNILL P, LILLY M D. Conversion of benzylpenicillin to 6-aminopenicillanic acid in a batch reactor and continuous feed stirred tank reactor using immobilized penicillin amidase[J]. Biotechnology and Bioengineering, 1973, 15(1):13-25.
    [22] SATO T, TOSA T, CHIBATA I. Continuous production of6-aminopenicillanic acid from penicillin by immobilized microbial cells[J]. European Journal of Applied Microbiology and Biotechnology, 1976, 2(3):153-160.
    [23] MARCONI W, CECERE F, MORISI F, et al. The hydrolysis of penicillin G to 6-amino penicillanic acid by entrapped penicillin acylase[J]. The Journal of Antibiotics, 1973, 26(4):228-232.
    [24] PARK J M, CHOI C Y, SEONG B L, et al. The production of6-aminopenicillanic acid by a multistage tubular reactor packed with immobilized penicillin amidase[J]. Biotechnology and Bioengineering, 1982, 24(7):1623-1637.
    [25] SUDHAKARAN V K, DESHPANDE B S, SHEWALE J G, et al.Production of 6-APA using a recirculated packed bed batch reactor[J].Biotechnology Letters, 1992, 14(10):913-918.
    [26] PAN J L, SYU M J. Kinetic study on substrate and product inhibitions for the formation of 7-amino-3-deacetoxy cephalosporanic acid from cephalosporin G by immobilized penicillin G acylase[J].Biochemical Engineering Journal, 2005, 23(3):203-210.
    [27] DESHMUKH P, SHEWALE J G, TRIPATHI M, et al. Bioconversion of cephalosporin-G to 7-amino deacetoxy cephalosporanic acid[J].Indian Journal of Pharmaceutical Sciences, 1998, 60(4):203-206.
    [28] LI H, CAO X. Bioconversion of cephalosporin-G to 7-ADCA in a pH-thermo sensitive recycling aqueous two-phase systems[J]. Process Biochemistry, 2011, 46(9):1753-1758.
    [29] CRAWFORD L, STEPAN A M, MCADA P C, et al. Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity[J]. Nature Biotechnology, 1995, 13(1):58.
    [30] CANTWELL C A, BECKMANN R J, DOTZLAF J E, et al. Cloning and expression of a hybrid Streptomyces clavuligerus cef E gene in Penicillium chrysogenum[J]. Current Genetics, 1990, 17(3):213-221.
    [31] VELASCO J, ADRIO J L, MORENO M A, et al. Environmentally safe production of 7-aminodeacetoxycephalosporanic acid(7-ADCA)using recombinant strains of Acremonium chrysogenum[J]. Nature Biotechnology, 2000, 18(8):857.
    [32]奚强,陈建,邝生鲁,等.头孢母核7-ACCA的合成与表征[J].北京化工大学学报(自然科学版),2005, 32(6):64-67.
    [33] TISCHER W, GIESECKE U, LANG G, et al. Biocatalytic7-aminocephalosporanic acid production[J]. Annals of the New York Academy of Sciences,1992, 672(1):502-509.
    [34] PARMAR A,KUMAR H,MARWAHA S S,et al. Recent trends in enzymatic conversion of cephalosporin C to 7-aminocephalosporanic acid(7-ACA)[J]. Critical Reviews in Biotechnology,1998,18(1):1-12.
    [35]罗晖,李强.酶法生产7-氨基头孢烷酸的研究进展[J].现代化工,2002, 22(12):18-22.
    [36] BARBER M S, GIESECKE U, REICHERT A, et al. Industrial enzymatic production of cephalosporin-basedβ-lactams[J]. Advances in Biochemical Engineering Biotechnology, 2004, 88:179-216.
    [37] CONLON H D,BAQAI J,BAKER K,et al. Two-step immobilized enzyme conversion of cephalosporin C to 7-aminocephalosporanic acid[J]. Biotechnology and Bioengineering,1995, 46(6):510-513.
    [38] RIETHORST W, REICHERT A. An industrial view on enzymes for the cleavage of cephalosporin C[J]. CHIMIA International Journal for Chemistry,1999, 53(12):600-607.
    [39] BIANCHI D,BORTOLO R, GOLINI P,et al. Enzymatic transformation of cephalosporin C to 7-ACA by simultaneous action of immobilized d-amino acid oxidase and glutaryl-7-ACA acylase[J].Applied Biochemistry and Biotechnology, 1998, 73(2-3):257-268.
    [40]梅玉龙,吴成军,马阳,等.一步酶裂解法生产7-氨基头孢烷酸的工艺改进[J].中国药物化学杂志,2018, 28(1):45-47.
    [41] ZHU X,LUO H,CHANG Y,et al. Characteristic of immobilized cephalosporin C acylase and its application in one-step enzymatic conversion of cephalosporin C to 7-aminocephalosporanic acid[J].World Journal of Microbiology and Biotechnology, 2011, 27(4):823-829.
    [42] BRUGGINK A, ROOS E C, DE VROOM E. Penicillin acylase in the industrial production ofβ-lactam antibiotics[J]. Organic Process Research&Development, 1998, 2(2):128-133.
    [43] WEGMAN M A, JANSSEN M H A, VAN RANTWIJK F, et al.Towards biocatalytic synthesis ofβ-lactam antibiotics[J]. Advanced Synthesis&Catalysis,2001,343(6-7):559-576.
    [44]冯胜昔,梁世中.β-内酰胺抗生素的酶法合成研究进展[J].中国抗生素杂志,2004, 29(11):697-702.
    [45] OSPINA S, BARZANA E, RAMIREZ O T, et al. Effect of pH in the synthesis of ampicillin by penicillin acylase[J]. Enzyme and Microbial Technology, 1996, 19(6):462-469.
    [46] ALEMZADEH I, BORGHEI G, VAFI L, et al. Enzymatic synthesis of amoxicillin with immobilized penicillin G acylase[J]. Scientia Iranica. Transaction C,Chemistry,Chemical Engineering,2010, 17(1):106.
    [47] MATEO C, ABIAN O, GRAZU V, et al. Recent advances in the industrial enzymatic synthesis of semi-syntheticβ-lactam antibiotics[J]. Medicinal Chemistry Reviews-Online, 2005, 2(3):207-218.
    [48] GIORDANO R C, RIBEIRO M P A, GIORDANO R L C. Kinetics ofβ-lactam antibiotics synthesis by penicillin G acylase(PGA)from the viewpoint of the industrial enzymatic reactor optimization[J].Biotechnology Advances, 2006, 24(1):27-41.
    [49] RIBEIRO M P A, FERREIRA A L O, GIORDANO R L C, et al.Selectivity of the enzymatic synthesis of ampicillin by E. coli PGA in the presence of high concentrations of substrates[J]. Journal of Molecular Catalysis B:Enzymatic,2005,33(3-6):81-86.
    [50]吴伟波,王旭,王娜,等.β-内酰胺类抗生素酶促合成新进展[J].有机化学,2006, 26(3):292-298.
    [51] YOUSHKO M I,VAN LANGEN L M,DE VROOM E, et al.Penicillin acylase-catalyzed synthesis of ampicillin in"aqueous solution-precipitate"systems. High substrate concentration and supersaturation effect[J]. Journal of Molecular Catalysis B:Enzymatic, 2000, 10(5):509-515.
    [52] YOUSHKO M I, SVEDAS V K. Penicillin acylase-catalyzed solidstate ampicillin synthesis[J]. Advanced Synthesis&Catalysis,2002, 344(8):894-898.
    [53] DIENDER M B, STRAATHOF A J J, VAN DER DOES T, et al.Course of pH during the formation of amoxicillin by a suspension-tosuspension reaction[J]. Enzyme and Microbial Technology, 2000,27(8):576-582.
    [54] SPIESS A C, KASCHE V. Enzymatic synthesis of amoxicillin[M]//VAN BROEKHOVEN A,SHAPIRO F,ANNE J. Novel frontiers in the production of compounds for biomedical use. Dordrecht, 2001:169-192.
    [55] YOUSHKO M I,VAN LANGEN L M,DE VROOM E,et al. Highly efficient synthesis of ampicillin in an"aqueous solution-precipitate"system:repetitive addition of substrates in a semicontinuous process[J]. Biotechnology and Bioengineering, 2001, 73(5):426-430.
    [56] MARESOVA H, PLACKOVA M, GRULICH M, et al. Current state and perspectives of penicillin G acylase-based biocatalyses[J].Applied Bicrobiology and Biotechnology, 2014, 98(7):2867-2879.
    [57] ILLANES A, WILSON L, AGUIRRE C. Synthesis of cephalexin in aqueous medium with carrier-bound and carrier-free penicillin acylase biocatalysts[J]. Applied Biochemistry and Biotechnology,2009, 157(1):98.
    [58]梅建凤,王普,王敏,等.固定化酶催化合成头孢羟氨苄[J].浙江工业大学学报,2005, 33(2):134-136.
    [59]叶树祥,徐成苗,王佳兵.固定化青霉素酰化酶合成头孢拉定的工艺研究[J].中国医药工业杂志,2007, 38(9):619-620.
    [60] ILLANES A, WILSON L, CORROTEA O, et al. Synthesis of cephalexin with immobilized penicillin acylase at very high substrate concentrations in fully aqueous medium[J]. Journal of Molecular Catalysis B:Enzymatic,2007,47(1-2):72-78.
    [61]刘宝树,栗晓特,张军立,等.生物酶法制备头孢克洛的研究进展[J].中国抗生素杂志,2017, 42(5):334-339.
    [62] LIU Y, DONGZHI W, PING X. Kinetically controlled synthesis of cefaclor using penicillin G acylase[J]. Journal of Molecular Catalysis(China), 2003, 17(2):81-87.
    [63]潘月,王佳珉,李端华,等.α-氨基酸酯水解酶合成头孢克洛[J].中国医药工业杂志,2015, 46(8):817-822.
    [64] ZHANG Y, WEI D, LI D, et al. Optimisation of enzymatic synthesis of cefaclor with in situ product removal and continuous acyl donor feeding[J]. Biocatalysis and Biotransformation, 2007, 25(1):59-64.
    [65] YANG L, WEI D Z. Enhanced enzymatic synthesis of a semisynthetic cephalosprin, cefaclor, with in situ product removal[J].Biotechnology Letters, 2003, 25(14):1195-1198.
    [66] WEI D,YANG L,SONG Q. Effect of temperature on the enzymatic synthesis of cefaclor with in situ product removal[J]. Journal of Molecular Catalysis B:Enzymatic, 2003,26(1-2):99-104.
    [67] YE W Z, DENG C L, QING X S, et al. Effect of substrate concentration on the synthesis of cefaclor by penicillin acylase with in situ product removal[J]. Chemical and Biochemical Engineering Quarterly, 2006, 20(2):183-188.
    [68] ZHANG Y W, WEI D Z. Enzymatic preparation of cefaclor with immobilized penicillin acylase[J]. Preparative Biochemistry&Biotechnology, 2008, 38(2):129-138.
    [69] YANG L,WEI D,ZHANG Y. Semi-continuous enzymatic synthesis of cefaclor enhanced by in situ product removal[J]. Journal ofChemical Technology&Biotechnology:International Research in Process,Environmental&Clean Technology,2004, 79(5):480-485.
    [70] HUMEAU C, GIRARDIN M, COULON D, et al. Synthesis of6-O-palmitoyl L-ascorbic acid catalyzed by Candida antartica lipase[J]. Biotechnology Letters, 1995, 17(10):1091-1094.
    [71] HUMEAU C, GIRARDIN M, ROVEL B, et al. Effect of the thermodynamic water activity and the reaction medium hydrophobicity on the enzymatic synthesis of ascorbyl palmitate[J].Journal of Biotechnology, 1998, 63(1):1-8.
    [72] HUMEAU C, GIRARDIN M, ROVEL B, et al. Enzymatic synthesis of fatty acid ascorbyl esters[J]. Journal of Molecular Catalysis B:Enzymatic, 1998, 5(1-4):19-23.
    [73] SUN W J, ZHAO H X, CUI F J, et al. D-isoascorbyl palmitate:lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology[J]. Chemistry Central Journal,2013, 7(1):114.
    [74] KARMEE S K. Biocatalytic synthesis of ascorbyl esters andtheir biotechnological applications[J]. Applied Microbiology and Biotechnology, 2009, 81(6):1013-1022.
    [75]孙明纯,张冬梅,张兴灿,等.辛伐他汀的合成研究新进展[J].生物化工,2017, 3(4):95-97.
    [76] TAO J, XU J H. Biocatalysis in development of green pharmaceutical processes[J]. Current Opinion in Chemical Biology, 2009, 13(1):43-50.
    [77] XIE X,PASHKOV I,GAO X,et al. Rational improvement of simvastatin synthase solubility in Escherichia coli leads to higher whole-cell biocatalytic activity[J]. Biotechnology and Bioengineering,2009,102(1):20-28.
    [78] XIE X, TANG Y. Efficient synthesis of simvastatin by use of wholecell biocatalysis[J]. Applied and Environmental Microbiology,2007, 73(7):2054-2060.
    [79] XIE X,WONG W W,TANG Y. Improving simvastatin bioconversion in Escherichia coli by deletion of bioH[J]. Metabolic Engineering,2007, 9(4):379-386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700