基于三维纳米阵列结构的表面增强拉曼技术研究及其在痕量铀酰离子探测中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Surface Enhancement Raman Technique Based on Three-Dimensional Nanoarray Structure and Its Application in Detection of Trace Uranyl Ions
  • 作者:何璇 ; 王少飞 ; 汪小琳
  • 英文作者:HE Xuan;WANG Shao-fei;WANG Xiao-lin;China Academy of Engineering Physics;
  • 关键词:铀酰离子 ; 痕量 ; 三维 ; 纳米阵列 ; 表面增强拉曼散射
  • 英文关键词:uranyl ions;;trace;;three-dimensional;;nanoarray;;SERS
  • 中文刊名:核化学与放射化学
  • 英文刊名:Journal of Nuclear and Radiochemistry
  • 机构:中国工程物理研究院;
  • 出版日期:2019-04-17 10:38
  • 出版单位:核化学与放射化学
  • 年:2019
  • 期:02
  • 语种:中文;
  • 页:46-52
  • 页数:7
  • CN:11-2045/TL
  • ISSN:0253-9950
  • 分类号:O657.37;TB383.1
摘要
表面增强拉曼散射(SERS)是一种新型痕量表征技术,其灵敏度高、样品用量少、特征谱易辨识,尤其适用于铀酰离子等危化品的探测。在过去十几年里,纳米材料和纳米技术在新兴技术和SERS的应用方面获得了长足发展,将先进的纳米制造技术引入了SERS领域。本文总结了利用光刻、原子层沉积等技术,开发了一系列高质量的三维阵列纳米材料作为SERS基底,并应用于痕量铀酰离子的检测。其中,以Al_2O_3、HfO_2等惰性氧化物包裹修饰的银纳米棒三维阵列作为基底,灵敏度高,稳定性好,根据不同特征的拉曼振动频谱,可识别多个不同种态的铀酰离子,检出限低至nmol/L,具有潜在的实际应用价值。
        Surface-enhanced Raman scattering(SERS) is a new trace analysis technology with high sensitivity, low sample dosage and easy identification of characteristic spectrum, especially suitable for the detection of dangerous chemicals such as uranyl ions. Over the past decade, nanomaterials and nanotechnology have made great progress in the application of emerging technologies and SERS, leading to the advanced nanomaterial synthesis methods being introduced into SERS field. This paper summarizes a series of high-quality 3 D array nanomaterials SERS substrates based on lithography, atomic layer deposition, etc., as well as their applications in the detection of trace uranyl ions. Especially, three-dimensional silver nanorods arrays coated with inert oxides(Al_2O_3, HfO_2, etc.) possess high sensitivity and outstanding stability, and the detection limit of uranyl ions is as low as nanomolar magnitude. Besides, multiple uranyl species could be identified on these substrates according to the differences of characteristic Raman vibration frequency, which has great potential practical applications.
引文
[1] Li J,Zhang Y.Remediation technology for the uranium contaminated environment:a review[J].Procedia Environmental Sciences,2012,13:1609-1615.
    [2] Wen J,Huang Z,Hu S,et al.Aggregation-induced emission active tetraphenylethene-based sensor for uranyl ion detection[J].J Hazard Mater,2016,318:363-370.
    [3] Uchida S,García-Tenorio R,Tagami K.Determination of U isotopic ratios in environmental samples by ICP-MS[J].J Anal At Spectrom,2000,15:889-892.
    [4] Zoriy M V,Halicz L,Ketterer M E.Reduction of UH+ formation for 236U/238U isotope ratio measurements at ultratrace level in double focusing sector field ICP-MS using D2O as solvent[J].J Anal At Spectrom,2004,19:362-367.
    [5] Amos M D,Will J B.Neutron activation analysis determination of uranium in waste water[J].Spectrochim Acta,1996,22:1325-1343.
    [6] Imura K,Okamoto H,Hossain M K,et al.Visua-lization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites[J].Nano Lett,2006,6:2173-2176.
    [7] Dai S,Lee Y H,Young J P.Observation of the surface-enhanced Raman scattering spectrum of uranyl ion[J].Appl Spectrosc,1996,50:536-537.
    [8] Bao L L,Mahurin S M,Haire R G,et al.Silver-doped sol-gel film as a surface-enhanced Raman scattering substrate for detection of uranyl and neptunyl ions[J].Anal Chem,2003,75:6614-6620.
    [9] Tsushima S,Nagasaki S,Tanaka S,et al.A Raman spectroscopic study of uranyl species adsorbed onto colloidal particles[J].J Phys Chem B,1998,102:9029-9032.
    [10] Teiten B,Burneau A.Detection and sorption study of dioxouranium(Ⅵ) ions on N-(2-mercaptopropionyl)glycine-modified silver colloid by surface-enhanced Raman scattering[J].J Raman Spectrosc,1997,28:879-884.
    [11] Ruan C,Luo W,Wang W,et al.Surface-enhanced Raman spectroscopy for uranium detection and analy-sis in environmental samples[J].Anal Chim Acta,2007,605:80-86.
    [12] Bhandari D,Wells S M,Retterer S T,et al.Charac-terization and detection of uranyl ion sorption on silver surfaces using surface enhanced Raman spectroscopy[J].Anal Chem,2009,81:8061-8067.
    [13] Leverette C L,Villa-Aleman E,Jokela S,et al.Trace detection and differentiation of uranyl(Ⅵ) ion cast films utilizing aligned Ag nanorod SERS substrates[J].Vib Spectrosc,2009,50:143-151.
    [14] Dutta S,Ray C,Sarkar S,et al.Silver nanoparticle decorated reduced graphene oxide(rGO) nanosheet:a platform for SERS based low-level detection of uranyl ion[J].ACS Appl Mater Inter,2013,5:8724-8732.
    [15] Shegai T,Li Z P,Dadosh T,et al.Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer[J].Proc Natl Acad Sci U S A,2008,105:16448-16453.
    [16] Shin Y,Song J,Kim D,et al.Facile preparation of ultrasmall void metallic nanogap from self-assembled gold-silica core-shell nanoparticles monolayer via kinetic control[J].Adv Mater,2015,27:4344-4350.
    [17] Zhu C H,Meng G W,Zheng P,et al.A hierarchically ordered array of silver-nanorod bundles for surface-enhanced raman scattering detection of phenolic pollutants[J].Adv Mater,2016,28:4871-4876.
    [18] Zhou Q T,Meng G W,Huang Q,et al.Ag-nano-particles-decorated NiO-nanoflakes grafted Ni-nanorod arrays stuck out of porous AAO as effective SERS substrates[J].Phys Chem Chem Phys,2014,16:3686-3692.
    [19] He X,Liu Y,Xue X G,et al.Ultrasensitive detection of explosives via hydrophobic condensation effect on biomimetic SERS platforms[J].J Mater Chem C,2017,5:12384-12392.
    [20] Wang S F,Jiang J L,Wu H X,et al.Self-assembly of silver nanoparticles as high active surface-enhanced Raman scattering substrate for rapid and trace analysis of uranyl(Ⅵ) ions[J].Spectrochim Acta,Part A,2017,180:23-28.
    [21] Jiang J L,Ma L W,Chen J,et al.SERS detection and characterization of uranyl ion sorption on silver nanorods wrapped with Al2O3 layers[J].Microchim Acta,2017,184:2775-2782.
    [22] Wang S F,Zou S M,Yang S L,et al.HfO2-wrapped slanted Ag nanorods array as a reusable and sensitive SERS substrate for trace analysis of uranyl compounds[J].Sen Actuators B-Chem,2018,265:539-546.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700