3种水分条件下深色有隔内生真菌(DSE)对芦苇生长及生理特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Dark Endophytic Fungi (DSE) on the Growth and Physiological Characteristics of Reed under Three Water Conditions
  • 作者:徐舟影 ; 肖宗 ; 何聪 ; 林云 ; 李静 ; 班宜辉
  • 英文作者:XU Zhou-ying;XIAO Zong;HE Cong;School of Civil Engineering and Architecture, Wuhan University of Technology;College of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology;
  • 关键词:深色有隔内生真菌 ; 芦苇 ; 水分胁迫 ; 生长指标 ; 渗透调节物质 ; 抗氧化酶活性
  • 英文关键词:Dark endophytic fungi;;Reed;;Water stress;;Growth index;;Osmotic adjustment substance;;Antioxidant enzyme activity
  • 中文刊名:安徽农业科学
  • 英文刊名:Journal of Anhui Agricultural Sciences
  • 机构:武汉理工大学土木工程与建筑学院;武汉理工大学化学化工与生命科学学院;
  • 出版日期:2019-10-25 14:10
  • 出版单位:安徽农业科学
  • 年:2019
  • 期:20
  • 基金:国家自然科学基金项目(31800420,31670541,31700262);; 湖北省自然科学基金项目(2018CFB126,2017CFB511);; 中央高校基本科研业务费武汉理工大学自主创新项目(2019IVB046,2018IB021)
  • 语种:中文;
  • 页:56-61
  • 页数:6
  • CN:34-1076/S
  • ISSN:0517-6611
  • 分类号:Q945
摘要
[目的]研究在3种水分条件下接种深色有隔内生真菌(DSE)菌株沙门外瓶柄霉(Exophiala salmonis)对芦苇生长及其生理特性的影响。[方法]采用盆栽试验的方法,从芦苇生长指标、渗透调节物质、抗氧化酶活性、叶绿素含量等方面研究DSE对芦苇幼苗的接种效应。[结果]在水分正常条件下,接种DSE的芦苇幼苗生物量增加21.8%,可溶性糖含量增加19.1%,脯氨酸大幅增加70.2%,SOD活性提高27.7%,CAT活性提高18.4%(P<0.05);水淹胁迫下,接种DSE后芦苇与对照相比在生物量、地径、叶绿素含量方面差异显著(P<0.05),分别增加了42.8%、14.3%和34.4%,而可溶性糖和脯氨酸含量则分别降低20.7%和11.0%;干旱胁迫下,接种DSE后芦苇生物量和叶绿素含量分别减少13.3%和23.2%,可溶性糖、SOD和CAT分别降低17.7%、73.7%和10.8%,MDA含量反而提高40.3%(P<0.05)。[结论]在正常水分下,接种DSE对宿主生长和光合作用有明显的促进作用,渗透调节能力和抗氧化能力都有显著提高;水淹胁迫下,接种DSE对芦苇的生长有一定促进作用,可通过渗透调节作用降低水淹环境对植物的伤害;干旱胁迫下,芦苇的光合作用、渗透调节作用和抗氧化能力均有所降低,抗旱性与抗逆性也都有所下降,此条件下DSE对芦苇生长产生不利影响。双因素方差分析结果表明,接种DSE和不同水分条件均对芦苇各项生长及生理指标产生显著影响(P<0.05),其中水分条件对芦苇的苗高、地径、鲜重和MDA含量产生极显著影响(P<0.001),接种DSE对芦苇根系活力、可溶性糖、SOD和CAT含量有极显著影响(P<0.001)。
        [Objective]In order to study the effects of Phragmites australis inoculated with DSE on the growth and physiological characteristics of reeds under three water conditions. [Method]This experiment used pot experiment to study on the inoculation effect of DSE on reed seedlings from various aspects such as plant growth index, osmotic adjustment substance, antioxidant enzyme activity and chlorophyll content. [Result]Under normal water condition, the biomass of reed seedlings inoculated with DSE increased by 21.8%, the soluble sugar content increased by 19.1%, the proline increased by 70.2%, the SOD activity increased by 27.7%, and the CAT activity increased 18.4%(P<0.05). Under flooding stress, there was significant difference in biomass, ground diameter and chlorophyll content of reeds after inoculation with DSE compared with the control(P<0.05), which increased by 42.8%, 14.3% and 34.4%, respectively. While the content of soluble sugar and proline decreased by 20.7% and 11.0%, respectively. Under drought stress, the biomass and chlorophyll content of reed decreased by 13.3% and 23.2%, respectively. Soluble sugar, SOD and CAT decreased by 17.7%, 73.7% and 10.8%, respectively, and MDA increased by 40.3%(P<0.05). [Conclusion] Under normal water condition, inoculation of DSE can significantly promote the growth and photosynthesis of the host, and the osmotic adjustment ability and antioxidant capacity are significantly improved. Under the flooding stress, DSE has a certain promoting effect on the growth of reed, which can reduce the damage of plants in flooded environment through osmotic adjustment. Under drought stress, photosynthesis, osmotic adjustment and antioxidant capacity of reeds were all reduced, and drought resistance and stress resistance were also reduced. Under this conditions, DSE had an adverse effect on the growth of reeds. Two-way analysis of variance showed that DSE and different water conditions had significant effects on the growth and physiological indexes of reeds, and different water conditions had an extremely significant effect on the fresh weight, seedling height, ground diameter and MDA content of reeds(P<0.001). DSE has an extremely significant effect on the root activity, soluble sugar, SOD and CAT content of reeds(P<0.001).
引文
[1] ZHAO X F,YUAN S H,SONG H C,et al.Arbuscular mycorrhizal and dark septate fungal associations in riparian plants of the Three Gorges Reservoir Region,Southwest China[J].Aquatic botany,2016,133:28-37.
    [2] XIE L L,HE X L,WANG K,et al.Spatial dynamics of dark septate endophytes in the roots and rhizospheres of Hedysarum scoparium in northwest China and the influence of edaphic variables[J].Fungal ecology,2017,26:135-143.
    [3] ROTHEN C,MIRANDA V,ARANDA-RICKERT A,et al.Characterization of dark septate endophyte fungi associated with cultivated soybean at two growth stages[J].Applied soil ecology,2017,120:62-69.
    [4] 邓勋,宋小双,尹大川,等.深色有隔内生真菌提高宿主植物抗逆性的研究进展[J].安徽农业科学,2015,43(31):10-11,17.
    [5] JUMPPONEN A,MATTSON K G,TRAPPE J M.Mycorrhizal functioning of Phialocephala fortinii with Pinus contorta on glacier forefront soil:Interactions with soil nitrogen and organic matter[J].Mycorrhiza,1998,7(5):261-265.
    [6] UPSON R,READ D J,NEWSHAM K K.Nitrogen form influences the response of Deschampsia antarctica to dark septate root endophytes[J].Mycorrhiza,2009,20(1):1-11.
    [7] BAN Y H,XU Z Y,YANG Y R,et al.Effect of dark septate endophytic fungus Gaeumannomyces cylindrosporus on plant growth,photosynthesis and Pb tolerance of maize(Zea mays L.)[J].Pedosphere,2017,27(2):283-292.
    [8] 农倩,张雯龙,蓝桃菊,等.一株抗香蕉枯萎病DSE菌株的筛选鉴定及抗病机理初探[J].热带作物学报,2017,38(3):559-564.
    [9] BARROW J R,AALTONEN R E.Evaluation of the internal colonization of Atriplex canescens(Pursh)Nutt.roots by dark septate fungi and the influence of host physiological activity[J].Mycorrhiza,2001,11(4):199-205.
    [10] ?RAJ-KR■,et al.Mycorrhizal colonisation in plants from intermittent aquatic habitats[J].Aquatic botany,2006,85:331-336.
    [11] DOLINAR N,REGVAR M,ABRAM D,et al.Water-level fluctuations as a driver of Phragmites australis primary productivity,litter decomposition,and fungal root colonization in an intermittent wetland[J].Hydrobiologia,2016,774(1):69-80.
    [12] STEVENS K J,WELLNER M R,ACEVEDO M F.Dark septate endophyte and arbuscular mycorrhizal status of vegetation colonizing a bottomland hardwood forest after a 100 year flood[J].Aquatic botany,2010,92:105-111.
    [13] 李芳芳.白洋淀湿地植物AM真菌和DSE物种多样性及DSE重金属抗性研究[D].保定:河北大学,2017.
    [14] YAZDI S E,PRINSL O G,HEYMAN H M,et al.Metabolomic analysis on anti-HIV activity of selected Helichrysum species[J].South African journal of botany,2017,109:376.
    [15] PHILLIPS J M,HAYMAN D S.Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorhizal fungi for rapid assessment of infection[J].Trans Br Mycol Soc,1970,55(1):158-161.
    [16] 高俊凤.植物生理学试验指导[M].北京:高等教育出版社,2006:431-457.
    [17] 王晶英,敖红,张杰,等.植物生理生化试验技术与原理[M].哈尔滨:东北林业大学出版社,2003:91-95.
    [18] 郝再彬,苍晶,徐仲.植物生理实验[M].哈尔滨:哈尔滨工业大学出版社,2004:316-342.
    [19] BRADFORD M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical biochemistry,1976,72(1/2):248-254.
    [20] 李合生.植物生理生化试验原理和技术[M].北京:高等教育出版社,2000:258-260.
    [21] LICHTENTHALER H K.Chlorophylls and carotenoids:Pigments of photosynthetic biomembranes[J].Methods in enzymology,1987,148:350-382.
    [22] SHERAMETI I,SHAHOLLARI B,VENUS Y,et al.The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters[J].Journal of biological chemistry,2005,280(28):26241-26247.
    [23] VARMA A,VERMA S,SUDHA X,et al.Piriformospora indica,a cultivable plant-growth-promoting root endophyte[J].Applied environmental microbiology,1999,65(6):2741-2744.
    [24] WALLER F,ACHATZ B,BALTRUSCHAT H,et al.The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance,disease resistance,and higher yield[J].Proceedings of the national academy of sciences of the United States of America,2005,102(38):13386-13391.
    [25] PARENT C,CAPELLI N,BERGER A,et al.An overview of plant responses to soil waterlogging[J].Plant stress,2008,2(1):20-27.
    [26] STEFFENS D,HUTSCH B W,ESCHHOLZ T,et al.Water logging may inhibit plant growth primarily by nutrient deficiency rather than nutrient toxicity[J].Plant soil and environment,2005,51(12):545-552.
    [27] BAILEY-SERRES J,VOESENEK L.Flooding stress:acclimations and genetic diversity[J].Plant Biol,2008,59:313-339.
    [28] XU X W,WANG H H,QI X H,et al.Waterlogging-induced increase in fermentation and related gene expression in the root of cucumber(Cucumis sativus L.)[J].Scientia horticulturae,2014,179:388-395.
    [29] TAN S D,ZHU M Y,ZHANG Q F.Physiological responses of bermudagrass(Cynodon dactylon)to submergence[J].Acta physiologiae plantarum,2010,32(1):133-140.
    [30] YU T,NASSUTH A,PETERSON R L.Characterization of the interaction between the dark septate fungus Phialocephala fortinii and Asparagus officinalis roots[J].Canadian journal of microbiology,2001,47(8):741-753.
    [31] SAIRAM R K,KUMUTHA D,EZHILMATHI K,et al.Waterlogging induced oxidative stress and antioxidant enzyme activities in pigeon pea[J].Biologia plantarum,2009,53(3):493-504.
    [32] HOSSAIN Z,LóPEZ-CLIMENT M F,ARBONA V,et al.Modulation of the antioxidant system in citrus under waterlogging and subsequent drainage[J].Journal of plant physiology,2009,166(13):1391-1404.
    [33] WANG B X,SEILER J R,MEI C S.A microbial endophyte enhanced growth of switchgrass under two drought cycles improving leaf level physiology and leaf development[J].Environmental and experimental botany,2016,122:100-108.
    [34] ANSARI A,RAZMJOO J,KARIMMOJENI H.Mycorrhizal colonization and seed treatment with salicylic acid to improve physiological traits and tolerance of flaxseed(Linumuzita tissimum L.)plants grown under drought stress[J].Acta Physiol Plant,2016,38(2):1-10.
    [35] 胡桂馨,王代军,刘荣堂.干旱胁迫下内生真菌对高羊茅保护酶活性的影响[J].草原与草坪,2001(1):28-31.
    [36] 黄承玲,陈训,高贵龙.3种高山杜鹃对持续干旱的生理响应及抗旱性评价[J].林业科学,2011,47(6):48-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700