用户名: 密码: 验证码:
超高压及三聚磷酸钠质量分数对肌球蛋白凝胶保水性及热胶凝过程的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Ultra-high Pressure Processing and Sodium Tripolyphosphate Contents on Water-Holding Capacity of Myosin Gel and Its Heat-Induced Gelation Process
  • 作者:钱畅 ; 薛思雯 ; 徐幸莲 ; 周光宏
  • 英文作者:QIAN Chang;XUE Siwen;XU Xinglian;ZHOU Guanghong;National Center of Meat Quality and Safety Control, Key Laboratory of Meat Processing and Quality Control, Ministry of Education,Key Laboratory of Meat Products Processing, Ministry of Agriculture, Jiangsu Collaborative Innovation Center of Meat Production and Processing,Quality and Safety Control, Nanjing Agricultural University;
  • 关键词:肌球蛋白 ; 超高压 ; 三聚磷酸钠 ; 保水性 ; 凝胶
  • 英文关键词:myosin;;ultra-high pressure;;sodium tripolyphosphate;;water-holding capacity;;gel
  • 中文刊名:食品科学
  • 英文刊名:Food Science
  • 机构:南京农业大学国家肉品质量安全控制工程技术研究中心肉品加工与质量控制教育部重点实验室农业部畜产品加工重点实验室江苏高校肉类生产与加工质量安全控制协同创新中心;
  • 出版日期:2019-01-15
  • 出版单位:食品科学
  • 年:2019
  • 期:01
  • 基金:国家自然科学基金面上项目(31471601);; 现代农业产业技术体系建设专项(CARS-41)
  • 语种:中文;
  • 页:100-109
  • 页数:10
  • CN:11-2206/TS
  • ISSN:1002-6630
  • 分类号:TS251.1
摘要
为探究超高压处理及三聚磷酸钠质量分数对肌球蛋白凝胶保水性及热胶凝过程的影响,在不同压力条件(100、200、300 MPa)下对添加不同质量分数(0%、0.15%、0.30%、0.45%)三聚磷酸钠的兔骨骼肌肌球蛋白进行25℃、9 min超高压处理后再经程序升温(1℃/min)制备凝胶,以未经超高压处理的含质量分数0.30%三聚磷酸钠的肌球蛋白为对照组,测定凝胶的保水性,并筛选出对其有显著影响的参数组合。在该条件下对蛋白的溶解度、ATP酶活力和升温过程中的蛋白二级结构含量、表面疏水性、活性巯基含量、静态流变性以及凝胶微观结构等指标进行测定。结果显示:含质量分数0.15%三聚磷酸钠的肌球蛋白经不高于200 MPa的超高压处理后,其溶解度显著下降,ATP酶活力显著上升(P<0.05);质量分数0.15%三聚磷酸钠对超高压处理诱导的肌球蛋白功能特性变化存在拮抗作用,且蛋白在升温过程中的变性、聚集受抑制,随着三聚磷酸钠质量分数升高到0.30%,拮抗作用消失,蛋白在热胶凝过程中结构充分展开,疏水基团与所包埋的巯基快速暴露,形成的凝胶结构富有弹性且致密有序,保水性显著提高(P<0.05);而300 MPa超高压处理使蛋白的ATP酶活力丧失,溶解度及热变性程度降低,分子间交联弱化,最终使凝胶保水性显著下降(P<0.05)。三聚磷酸钠通过影响蛋白的结构与理化特性,改变其热凝胶形成过程中的变性速率与交联方式,导致最终凝胶保水性发生变化。
        To investigate the effect of ultra-high pressure(UHP) processing and sodium tripolyphosphate(STPP) contents on the water-holding capacity(WHC) of myosin gel and the heat-induced gelation process, rabbit Psoas major myosin dialyzed against different STPP concentrations(0%, 0.15%, 0.30% or 0.45%) were subjected to UHP treatments(25 ℃, 9 min) at different pressure levels(100, 200 and 300 MPa) before programmed heating(1 ℃/min) to form gels. Unpressurized myosin containing 0.30% STPP was set as the control. The WHC was measured to filter the parameters that had significant effects on gel properties. The protein solubility and ATPase activity and changes in the secondary structure content, surface hydrophobicity, reactive sulfhydryl group content, and rheological properties as well as the gel microstructure during heating were measured. The results indicated that the solubility of myosin containing 0.15% STPP decreased, while its ATPase activity increased significantly(P < 0.05) after pressure treatments below 200 MPa, which indicates that 0.15%STPP could counteract pressure-induced changes in functional properties of myosin. The denaturation and agglomeration process were hindered as well. The counteractive effect was diminished with the increase in STPP content up to 0.30%. The protein underwent sufficient unfolding as well as rapid exposure of buried residues during gelling, which resulted in an elastic, compact and ordered gel network structure and a significant increase in WHC(P < 0.05). The ATPase of myosin was inactivated under 300 MPa, and its solubility decreased as well. The extent of protein denaturation was reduced and intermolecular cross-linking was weakened. As a result, the WHC decreased significantly(P < 0.05). STPP appears to affect the structure and physiochemical properties of myosin, leading to alteration in its denaturation rate and cross-linking pattern during heating and consequently change in WHC eventually.
引文
[1]FEINER G.Meat products handbook:practical science and technology[M].Cambridge:Woodhead Publishing Limited,2006:73-77.
    [2]XIONG Youling L.,LOU Xin,WANG Chong,et al.Protein extraction from chicken myofibrils irrigated with various polyphosphate and NaCl solutions[J].Journal of Food Science,2000,65(1):96-100.DOI:10.1111/j.1365-2621.2000.tb15962.x.
    [3]SHERMAN R A,MEHTA O.Phosphorus and potassium content of enhanced meat and poultry products:implications for patients who receive dialysis[J].Clinical Journal of the American Society of Nephrology,2009,4(8):1370-1373.DOI:10.2215/CJN.02830409.
    [4]VILLAMONTE G,SIMONIN H,DURANTON F,et al.Functionality of pork meat proteins:impact of sodium chloride and phosphates under high-pressure processing[J].Innovative Food Science&Emerging Technologies,2013,18:15-23.DOI:10.1016/j.ifset.2012.12.001.
    [5]LOWDER A C,MIRELES DEWITT C A.Impact of high pressure processing on the functional aspects of beef muscle injected with salt and/or sodium phosphates[J].Journal of Food Processing and Preservation,2014,38(4):1840-1848.DOI:10.1111/jfpp.12155.
    [6]徐幸莲.兔骨骼肌肌球蛋白热诱导凝胶特性及成胶机制研究[D].南京:南京农业大学,2003:13-103.
    [7]FERRY J D.Protein gels[J].Advances in Protein Chemistry,1948,4:1-78.DOI:10.1016/S0065-3233(08)60004-2.
    [8]PIGHIN D G,SANCHO A M,GONZALEZ C B.Effect of salt addition on the thermal behavior of proteins of bovine meat from Argentina[J].Meat Science,2008,79(3):549-556.DOI:10.1016/j.meatsci.2007.12.011.
    [9]FINDLAY C J,BARBUT S.A response surface investigation of the effects of sodium chloride and tripolyphosphate on the thermal properties of beef muscle[J].Meat Science,1992,31(2):155-164.DOI:10.1016/0309-1740(92)90035-3.
    [10]SPERONI F,SZERMAN N,VAUDAGNA S R.High hydrostatic pressure processing of beef patties:effects of pressure level and sodium tripolyphosphate and sodium chloride concentrations on thermal and aggregative properties of proteins[J].Innovative Food Science and Emerging Technologies,2014,23:10-17.DOI:10.1016/j.ifset.2014.03.011.
    [11]KIJOWSKI J M,MAST M G.Effect of sodium chloride and phosphates on the thermal properties of chicken meat proteins[J].Journal of Food Science,1988,53(2):367-370.DOI:10.1111/j.1365-2621.1988.tb07707.x.
    [12]CAO Yingying,XIA Tianlan,ZHOU Guanghong,et al.The mechanism of high pressure-induced gels of rabbit myosin[J].Innovative Food Science and Emerging Technologies,2012,16:41-46.DOI:10.1016/j.ifset.2012.04.005.
    [13]汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2001:77-110.
    [14]郭尧君.蛋白质电泳实验技术[M].北京:科学出版社,2001:86.
    [15]LAEMMLI U K.Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J].Nature,1970,227:680-685.DOI:10.1038/227680a0.
    [16]XUE Siwen,YANG Huijuan,YU Xiaobo,et al.Applications of high pressure to pre-rigor rabbit muscles affect the water characteristics of myosin gels[J].Food Chemistry,2018,240:59-66.DOI:10.1016/j.foodchem.2017.07.096.
    [17]王梦瑶.超高压诱导兔肉肌球蛋白及其亚基热凝胶机制研究[D].南京:南京农业大学,2017:57-64.
    [18]CHEN Xing,CHEN Conggui,ZHOU Yanzi,et al.Effects of high pressure processing on the thermal gelling properties of chicken breast myosin containingκ-carrageenan[J].Food Hydrocolloids,2014,40:262-272.DOI:10.1016/j.foodhyd.2014.03.018.
    [19]KOCHER P N,FOEGEDING E A.Microcentrifuge-based method for measuring water-holding of protein gels[J].Journal of Food Science,1993,58(5):1040-1046.DOI:10.1111/j.1365-2621.1993.tb06107.x.
    [20]田金河.高强度超声波辅助制备罗非鱼分离蛋白及其凝胶特性的研究[D].广州:华南理工大学,2015:56-57.
    [21]薛思雯,邹玉峰,杨慧娟,等.氯化钠浓度对僵直前高压处理兔肉中肌球蛋白凝胶保水性及其胶凝过程中分子特性和结构变化的影响[J].食品工业科技,2017,38(3):97-101;107.DOI:10.13386/j.issn1002-0306.2017.03.010.
    [22]ELLMAN G L.Tissue sulfhydryl groups[J].Archives of Biochemistry and Biophysics,1959,82(1):70-77.DOI:10.1016/0003-9861(59)90090-6.
    [23]SMYTH A B,SMITH D M,VEGA-WARNER V,et al.Thermal denaturation and aggregation of chicken breast muscle myosin and subfragments[J].Journal of Agricultural and Food Chemistry,1996,44(4):1005-1010.DOI:10.1021/jf950581p.
    [24]周光宏,罗欣,徐幸莲.肉品加工学[M].北京:中国农业出版社,2008:66-70.
    [25]曹莹莹,张亮,王鹏,等.超高压结合热处理对肌球蛋白凝胶特性及蛋白二级结构的影响[J].肉类研究,2013,27(1):1-7.DOI:10.7506/rlyj1001-8123-201301001.
    [26]TINTCHEV F,BINDRICH U,TOEPFL S,et al.High hydrostatic pressure/temperature modeling of frankfurter batters[J].Meat Science,2013,94(3):376-387.DOI:10.1016/j.meatsci.2013.02.012.
    [27]WANG S F,SMITH D M.Gelation of chicken breast muscle actomyosin as influenced by weight ratio of actin to myosin[J].Journal of Agricultural and Food Chemistry,1995,43(2):331-336.DOI:10.1021/jf00050a013.
    [28]彭增起.肌肉盐溶蛋白质溶解性和凝胶特性研究[D].南京:南京农业大学,2005:3-10.
    [29]薛思雯,钱畅,王梦瑶,等.肌球蛋白高压凝胶机理的研究进展[J].肉类研究,2016,30(10):40-44.DOI:10.15922/j.cnki.rlyj.2016.10.008.
    [30]YAMAMOTO K,YOSHIDA T,IWASAKI T.Hydrostatic pressureinduced solubilization and gelation of chicken myofibrils:progress in biotechnology[J].Progress in Biotechnology,2002,19:461-468.DOI:10.1016/S0921-0423(02)80139-3.
    [31]YAMAMOTO K,HAYASHI S,YASUI T.Hydrostatic pressureinduced aggregation of myosin molecules in 0.5 M KCl at pH 6.0[J].Bioscience,Biotechnology,and Biochemistry,1993,57(3):383-389.DOI:10.1271/bbb.57.383.
    [32]ZHANG Ziye,YANG Yuling,ZHOU Peng,et al.Effects of high pressure modification on conformation and gelation properties of myofibrillar protein[J].Food Chemistry,2017,217:678-686.DOI:10.1016/j.foodchem.2016.09.040.
    [33]HSU K C,KO W C.Effect of hydrostatic pressure on aggregation and viscoelastic properties of tilapia(Orechromis niloticus)myosin[J].Journal of Food Science,2008,66(8):1158-1162.DOI:10.1111/j.1365-2621.2001.tb16098.x.
    [34]IKEUCHI Y,TANJI H,KIM K,et al.Mechanism of heat-induced gelation of pressurized actomyosin:pressure-induced changes in actin and myosin in actomyosin[J].Journal of Agricultural and Food Chemistry,1992,40(10):1756-1761.DOI:10.1021/jf00022a006.
    [35]YAMAMOTO K,YOSHIDA Y,MORITA J,et al.Morphological and physicochemical changes in the myosin molecules induced by hydrostatic pressure[J].The Journal of Biochemistry,1994,116(1):215-220.DOI:10.1093/oxfordjournals.jbchem.a124496.
    [36]IWASAKI T,YAMAMOTO K.Effect of high hydrostatic pressure on chicken myosin subfragment-1[J].International Journal of Biological Macromolecules,2002,30(5):227-232.DOI:10.1016/S0141-8130(02)00037-5.
    [37]MUHLRAD A,PEYSER Y M,RINGEL I.Effect of actin,ATP,phosphates,and pH on vanadate-induced photocleavage of myosin subfragment 1[J].Biochemistry,1991,30(4):958-965.DOI:10.1021/bi00218a011.
    [38]EGELANDSDAL B,FRETHEIM K,SAMEJIMA K.Dynamic rheological measurements on heat-induced myosin gels:effect of ionic strength,protein concentration and addition of adenosine triphosphate or pyrophosphate[J].Journal of the Science of Food and Agriculture,1986,37(9):915-926.DOI:10.1002/jsfa.2740370914.
    [39]BLUM J J.Interaction between myosin and its substrates[J].Archives of Biochemistry and Biophysics,1960,87(1):104-119.DOI:10.1016/0003-9861(60)90130-2.
    [40]JIN Hongguo,XIONG Youling L.,PENG Zengqi,et al.Purification and characterization of myosin-tripolyphosphatase from rabbit Psoas major muscle:research note[J].Meat Science,2011,89(4):372-376.DOI:10.1016/j.meatsci.2010.10.014.
    [41]靳红果.猪肉多聚磷酸酶调控肌肉蛋白质凝胶特性的研究[D].南京:南京农业大学,2011:89-95.
    [42]林丽军.肌球蛋白的ATPase活性及热凝胶特性研究[D].南京:南京农业大学,2004:35-43.
    [43]FERNáNDEZ-MARTI?N F,COFRADES S,CARBALLO J,et al.Salt and phosphate effects on the gelling process of pressure/heat treated pork batters[J].Meat Science,2002,61(1):15-23.DOI:10.1016/S0309-1740(01)00157-7.
    [44]胡飞华.梅鱼鱼糜超高压凝胶化工艺及凝胶机理的研究[D].杭州:浙江工商大学,2010:70-91.
    [45]郭添玥.氯化钠和三聚磷酸钠对超高压鸡肉制品凝胶特性的影响[D].南京:南京农业大学,2015:46-47.
    [46]曾淑薇,李吉,熊善柏,等.磷酸盐对草鱼肌原纤维蛋白结构的影响[J].食品科学,2014,35(23):48-51.DOI:10.7506/spkx1002-6630-201423010.
    [47]LIU Gang,XIONG Youling L..Gelation of chicken muscle myofibrillar proteins treated with protease inhibitors and phosphates[J].Journal of Agricultural and Food Chemistry,1997,45(9):3437-3442.DOI:10.1021/jf9700485.
    [48]WRIGHT D J,WILDING P.Differential scanning calorimetric study of muscle and its proteins:myosin and its subfragments[J].Journal of the Science of Food and Agriculture,1984,35(3):357-372.DOI:10.1002/jsfa.2740350317.
    [49]ROBE G H,XIONG Youling L..Dynamic rheological studies on saltsoluble proteins from three porcine muscles[J].Food Hydrocolloids,1993,7(2):137-146.DOI:10.1016/S0268-005X(09)80165-3.
    [50]HENRY G D,MARUTA S,IKEBE M,et al.Observation of multiple myosin subfragment 1-ADP-fluoroberyllate complexes by fluorine-19NMR spectroscopy[J].Biochemistry,1993,32(39):10451-10456.DOI:10.1021/bi00090a022.
    [51]SHRIVER J W,KAMATH U.Differential scanning calorimetry of the unfolding of myosin subfragment 1,subfragment 2,and heavy meromyosin[J].Biochemistry,1990,29(10):2556-2564.DOI:10.1021/bi00462a018.
    [52]VERBEKEN D,NEIRINCK N,VAN DER MEEREN P,et al.Influence ofκ-carrageenan on the thermal gelation of salt-soluble meat proteins[J].Meat Science,2005,70(1):161-166.DOI:10.1016/j.meatsci.2004.12.007.
    [53]XUE Siwen,YANG Huijuan,WANG Huhu,et al.High-pressure effects on the molecular aggregation and physicochemical properties of myosin in relation to heat gelation[J].Food Research International,2017,99:413-418.DOI:10.1016/j.foodres.2017.06.014.
    [54]WANG Mengyao,CHEN Xing,ZOU Yufeng,et al.High-pressure processing-induced conformational changes during heating affect water holding capacity of myosin gel[J].International Journal of Food Science&Technology,2017,52(3):724-732.DOI:10.1111/ijfs.13327.
    [55]HAN Minyi,WANG Peng,XU Xinglian,et al.Low-field NMR study of heat-induced gelation of pork myofibrillar proteins and its relationship with microstructural characteristics[J].Food Research International,2014,62:1175-1182.DOI:10.1016/j.foodres.2014.05.062.
    [56]JAO C L,HWANG J S,KO W C,et al.A kinetic study on inactivation of tilapia myosin Ca-ATPase induced by high hydrostatic pressure[J].Food Chemistry,2007,101(1):65-69.DOI:10.1016/j.foodchem.2005.11.051.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700