脂肪源基质血管组分细胞及其临床应用进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Adipose-derived Stromal Vascular Fraction Cells and Their Clinical Application Progress
  • 作者:赵贤省 ; 金亮 ; 胡文军
  • 英文作者:ZHAO Xiansheng;JIN Liang;HU Wenjun;School of Life Science and Technology, China Pharmaceutical University;
  • 关键词:SVF细胞 ; 基质血管组分 ; 脂肪源干细胞 ; 细胞治疗
  • 英文关键词:SVF cell;;stromal vascular fraction;;adipose-derived stem cell;;cell therapy
  • 中文刊名:药学进展
  • 英文刊名:Progress in Pharmaceutical Sciences
  • 机构:中国药科大学生命科学与技术学院;
  • 出版日期:2019-06-25
  • 出版单位:药学进展
  • 年:2019
  • 期:06
  • 语种:中文;
  • 页:27-35
  • 页数:9
  • CN:32-1109/R
  • ISSN:1001-5094
  • 分类号:R329.2
摘要
脂肪源基质血管组分(SVF)细胞是一种具有干细胞特性的异质性细胞群,SVF含有的多种细胞类型使其具有强大的免疫调节、血管新生和组织重建等再生潜能。目前将其应用于多种疾病的临床治疗,均显示出良好的安全性和治愈效果。综述目前提取脂肪源SVF的不同方法及其所含细胞群的具体表型,同时也总结了SVF在脂肪移植、糖尿病、克罗恩病和骨关节炎等多种疾病中的临床应用进展。
        Adipose-derived stromal vascular fraction(SVF) cells are a heterogeneous cell population with the characteristics of stem cells.Because of their various cell types, they have strong regenerative potentials such as angiogenesis, tissue remodeling and immune regulation.They have been used for clinic treatment of various conditions with good safety and therapeutic effects. This article reviewed the different separation methods of adipose-derived SVF and characterizes the specific phenotypes of the cells contained in it. At the same time, the advances in clinical applications of SVF in fat transplantation, diabetes, Crohn's disease, osteoarthritis and other diseases were summarized.
引文
[1] Locke M, Windsor J, Dunbar P R. Human adipose-derived stem cells:isolation, characterization and applications in surgery[J]. ANZ J Surg, 2010, 79(4):235-244.
    [2] Bourin P, Bunnell B A, Casteilla L, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells:a joint statement of the International Federation for Adipose Therapeutics and Science(IFATS)and the International Society for Cellular Therapy(ISCT)[J]. Cytotherapy, 2013, 15(6):641-648.
    [3] Zuk P, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue:implications for cell-based therapies[J]. Tissue Eng Part A, 2001, 7(2):211-228.
    [4] Domergue S, Bony C, Maumus M, et al. Comparison between stromal vascular fraction and adipose mesenchymal stem cells in remodeling hypertrophic scars[J]. PLoS One, 2016, 11(5):156-161.
    [5] Sinno S, Wilson S, Brownstone N, et al. Current thoughts on fat grafting:using the evidence to determine fact or fiction[J]. Plast Reconstr Surg, 2016, 137(3):818-824.
    [6] Gimble J M, Bunnell B A, Frazier T, et al. Adipose-derived stromal/stem cells:a primer[J]. Organogenesis, 2013, 9(1):3-10.
    [7] Markarian C F, Frey G Z, Silveira M D, et al. Isolation of adiposederived stem cells:a comparison among different methods[J].Biotech Lett, 2014, 36(4):693-702.
    [8] Zeng G, Lai K, Li J, et al. A rapid and efficient method for primary culture of human adipose-derived stem cells[J]. Organogenesis,2013, 9(4):287-295.
    [9] Tonnard P, Verpaele A, Peeters G, et al. Nanofat grafting:basic research and clinical application[J]. Plast Reconstr Surg, 2013,132(4):1017-1026.
    [10] Fraser J K, Hicok K C, Shanahan R, et al. The Celutiona?system:automated processing of adipose-derived regenerative cells in a functionally closed system[J]. Adv Wound Care, 2014, 3(1):38-45.
    [11] Oberbauer E, Steffenhagen C, Wurzer C, et al. Enzymatic and non-enzymatic isolation systems for adipose tissue-derived cells:current state of the art[J]. Cell Regen, 2015, 4(1):7. Doi:10.1186/s13619-015-0020-0.
    [12] SundarRaj S, Deshmukh A, Priya N, et al. Development of a system and method for automated isolation of stromal vascular fraction from adipose tissue lipoaspirate[J]. Stem Cells Int, 2015,2015:1-11.
    [13] Zhang W J, Sun J J. Isolation, culture and identification of human adipose-derived mesenchymal stem cells[J]. Otolaryngol Head Neck Surg, 2016, 30(9):726-729.
    [14] Nguyen A, Guo J, Banyard D A, et al. Stromal vascular fraction:a regenerative reality? Part 1:current concepts and review of the literature[J]. J Plast Reconstr Aesthet Surg, 2016, 69(2):170-179.
    [15] Gimble J, Bunnell B, Chiu E, et al. Concise review:adiposederived stromal vascular fraction cells and stem cells:let’s not get lost in translation[J]. Stem Cells, 2011, 29(5):749-754.
    [16] Guo J, Nguyen A, Banyard D A, et al. Stromal vascular fraction:a regenerative reality? Part 2:mechanisms of regenerative action[J].J Plast Reconstr Aesthet Surg, 2016, 69(2):180-188.
    [17] Zimmerlin L, Donnenberg V S, Rubin J P, et al. Mesenchymal markers on human adipose stem/progenitor cells[J]. Cytometry A,2013, 83A(1):134-140.
    [18] Ryu Y, Cho T, Lee D, et al. Phenotypic characterization and in vivo localization of human adipose-derived mesenchymal stem cells[J].Molecules Cells, 2013, 35(6):557-564.
    [19] Asahara T, Kawamoto A, Masuda H. Concise review:circulating endothelial progenitor cells for vascular medicine[J]. Stem Cells,2011, 29(11):1650-1655.
    [20] Garipcan B, Maenz S, Pham T, et al. Image analysis of endothelial microstructure and endothelial cell dimensions of human arteries-a preliminary study[J]. Adv Eng Mater, 2011, 13(1/2):B54-B57.
    [21] Rosenbluth M J, Lam W A, Fletcher A. Force microscopy of nonadherent cells:a comparison of leukemia cell deformability[J].Biophys J, 2006, 90(8):2994-3003.
    [22] Krombach F, Münzing S, Allmeling A M, et al. Cell size of alveolar macrophages:an interspecies comparison[J]. Environ Health Persp, 1997, 105(Suppl 5):1261-1263.
    [23] Ammit A J, Panettieri R A. Invited review:the circle of life:cell cycle regulation in airway smooth muscle[J]. J Appl Physiol, 2001,91(3):1431-1437.
    [24] Proebstl D, Voisin M, Woodf A, et al. Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo[J]. J Exp Med, 2012, 209(6):1219-1234.
    [25] Lai N, Sims K, Jeon L, et al. Adipocyte induction of preadipocyte differentiation in a gradient chamber[J]. Tissue Eng Part C Methods, 2012, 18(12):958. Doi:10.1089/ten.TEC.2012.0168.
    [26] Pachón-Pea G, Yu G, Tucker A, et al. Stromal stem cells from adipose tissue and bone marrow of age-matched female donors display distinct immunophenotypic profiles[J]. J Cell Physiol,2011, 226(3):843-851.
    [27] Coralie S, Karine L, Alexia Z G, et al. Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells[J]. J Cell Physiol,2010, 205(1):114-122.
    [28] Maumus M, Peyrafitte J A, D’angelo R, et al. Native human adipose stromal cells:localization, morphology and phenotype[J].Int J Obes, 2011, 35(9):1141-1153.
    [29] Dominici M, Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement[J]. Cytotherapy, 2006, 8(4):315-317.
    [30] Sidney L E, Branch M J, Dunphy S E, et al. Concise review:evidence for CD34 as a common marker for diverse progenitors[J].Stem Cells, 2014, 32(6):1380-1389.
    [31] Traktuev D O, Prater D N, Merfeld-Clauss S, et al. Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells[J]. Circ Res, 2009,104(12):1410-1420.
    [32] Astori G, Vignati F, Bardelli S, et al.“In vitro” and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells[J]. J Transl Med, 2007, 5(1):55-57.
    [33] Navarro A, Marín S, Riol N, et al. Human adipose tissue-resident monocytes exhibit an endothelial-like phenotype and display angiogenic properties[J]. Stem Cell Res Ther, 2014, 5(2):50-51.
    [34] Eto H, Ishimine H, Kinoshita K, et al. Characterization of human adipose tissue-resident hematopoietic cell populations reveals a novel macrophage subpopulation with CD34 expression and mesenchymal multipotency[J]. Stem Cells Dev, 2013, 22(6):985-997.
    [35] Tocco I, Widgerow A D, Lalezari S, et al. Lipotransfer:the potential from bench to bedside[J]. Ann Plast Surg, 2014, 72(5):599-609.
    [36] Moustaki M, Papadopoulos O, Verikokos C, et al. Application of adipose derived stromal cells in fat grafting:basic science and literature review[J]. Exp Ther Med, 2017, 14(3):2415-2423.
    [37] K?lle S F T, Fischernielsen A, Mathiasen A B, et al. Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival:a randomised placebo-controlled trial[J]. Lancet, 2013, 382(9898):1113-1120.
    [38] Karacaoglu E, Kizilkaya E, Cermik H, et al. The role of recipient sites in fat-graft survival:experimental study[J]. Ann Plast Surg,2005, 55(1):63-68.
    [39] Matsumoto D, Sato K, Gonda K, et al. Cell-assisted lipotransfer:supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection[J]. Tissue Eng, 2006, 12(12):3375-3382.
    [40] Yoshimura K, Sato K, Aoi N, et al. Cell-assisted lipotransfer for cosmetic breast augmentation:supportive use of adipose-derived stem/stromal cells[J]. Aesthetic Plast Surg, 2008, 32(1):48-55.
    [41] Li J, Gao J, Cha P, et al. Supplementing fat grafts with adipose stromal cells for cosmetic facial contouring[J]. Dermatol Surg,2013, 39(3Pt1):449-456.
    [42] Tanikawa D Y S, Aguena M, Bueno D, et al. Fat grafts supplemented with adipose-derived stromal cells in the rehabilitation of patients with craniofacial microsomia[J]. Plast Reconstr Surg, 2013, 132(1):141-152.
    [43] Charles-De-SáL, Gontijo-De-Amorim N, Takiya C M, et al.Antiaging treatment of the facial skin by fat graft and adiposederived stem cells[J]. Plast Reconstr Surg, 2015, 135(4):999-1009.
    [44] Mandel K, Yang Y, Schambach A, et al. Mesenchymal stem cells directly interact with breast cancer cells and promote tumor cell growth in vitro and in vivo[J]. Stem Cells Dev, 2013, 22(23):3114-3127.
    [45] Lu Y, Yang Y, Liu Y, et al. Upregulation of PAG1/Cbp contributes to adipose-derived mesenchymal stem cells promoted tumor progression and chemoresistance in breast cancer[J]. Biochem Biophys Res Commun, 2017, 494(3/4):719-727.
    [46] Riccardo S, Wakako T, Gorantla V, et al. The role of adiposederived stem cells in breast cancer progression and metastasis[J].Stem Cells Int, 2015, 2015:1-17.
    [47] Hi-Jin Y, Seung-Kyu H. Cell therapy for wound healing[J]. J Korean Med Sci, 2014, 29(3):311-319.
    [48] Hedhli J, Konopka C J, Schuh S, et al. Multimodal assessment of mesenchymal stem cell therapy for diabetic vascular complications[J]. Theranostics, 2017, 7(16):3876-3888.
    [49] Ricco J B, Phong L T, Schneider F, et al. The diabetic foot:a review[J]. J Card Surg, 2013, 54(6):755-762.
    [50] Chae D S, Han S, Son M, et al. Stromal vascular fraction shows robust wound healing through high chemotactic and epithelialization property[J]. Cytotherapy, 2017, 19(4):543-554.
    [51] Didangelos T, Koliakos G, Kouzi K, et al. Accelerated healing of a diabetic foot ulcer using autologous stromal vascular fraction suspended in platelet-rich plasma[J]. Regen Med, 2018, 13(3):277-281.
    [52] Tan S S, Yeo X Y, Liang Z C, et al. Stromal vascular fraction promotes fibroblast migration and cellular viability in a hyperglycemic microenvironment through up-regulation of wound healing cytokines[J]. Exp Mol Pathol, 2018, 104(3):250-255.
    [53] Rajashekhar G, Ramadan A, Abburi C, et al. Regenerative therapeutic potential of adipose stromal cells in early stage diabetic retinopathy[J]. PLoS One, 2014, 9(1):8-17.
    [54] Park S S. Cell therapy applications for retinal vascular diseases:diabetic retinopathy and retinal vein occlusion[J]. Invest Ophthalmol Vis Sci, 2016, 57(5):1-10.
    [55] Laass M W, Roggenbuck D, Conrad K. Diagnosis and classification of Crohn’s disease[J]. Autoimmun Rev, 2014, 13(4/5):467-471.
    [56] Sartor R B. Mechanisms of disease:pathogenesis of Crohn’s disease and ulcerative colitis[J]. Nat Clin Pract Gastroenterol Hepatol, 2006, 3(7):390-407.
    [57] Cao Y, Ding Z, Han C, et al. Efficacy of mesenchymal stromal cells for fistula treatment of Crohn's disease:a systematic review and meta-analysis[J]. Dig Dis Sci, 2017, 62(4):851-860.
    [58] Dalal J, Gandy K, Domen J. Role of mesenchymal stem cell therapy in Crohn’s disease[J]. Pediatric Res, 2012, 71(4 Pt 2):445-451.
    [59] Dryden G W, Boland E, Yajnik V, et al. Comparison of stromal vascular fraction with or without a novel bioscaffold to fibrin glue in a porcine model of mechanically induced anorectal fistula[J].Inflamm Bowel Dis, 2017, 23(11):1-4.
    [60] Philandrianos C, Serrero M, Grimaud F, et al. First clinical case report of local microinjection of autologous fat and adipose-derived stromal vascular fraction for perianal fistula in Crohn’s disease[J].Stem Cell Res Ther, 2018, 9(1):4-9.
    [61] Molendijk I, Verspaget H, Veenendaal R, et al. Standardization of mesenchymal stromal cell therapy for perianal fistulizing Crohn’s disease[J]. Eur J Gastroenterol Hepatol, 2018, 30(10):1148-1154.
    [62] Lee M K, DeConde A S, Lee M, et al. Biomimetic scaffolds facilitate healing of critical-sized segmental mandibular defects[J].Am J Otolaryngol, 2015, 36(1):1-6.
    [63] Thesleff T, Lehtim?ki K, Niskakangas T, et al. Cranioplasty with adipose-derived stem cells, betatricalcium phosphate granules and supporting mesh:six-year clinical follow-up results[J]. Stem Cells Transl Med, 2017, 6(7):1576-1582.
    [64] We i s g e r b e r D W, M i l n e r D J. A m i n e r a l i z e d c o l l a g e npolycaprolactone composite promotes healing of a porcine mandibular defect[J]. Tissue Eng Part A, 2018, 24(11/12):943-954.
    [65] Mehrkens A, Saxer F, Güven S, et al. Intraoperative engineering of osteogenic grafts combining freshly harvested, human adiposederived cells and physiological doses of bone morphogenetic protein-2[J]. Eur Cell Mater, 2012, 24(7):308-319.
    [66] Jurgens W J F M, Kroeze R, Zandieh-Doulabi B, et al. One-step surgical procedure for the treatment of osteochondral defects with adipose-derived stem cells in a caprine knee defect:a pilot study[J].Biores Open Access, 2013, 2(4):315-325.
    [67] Ilaria R, Carolina B D, Mara C, et al. Adipose-derived stromal vascular fraction/xenohybrid bone scaffold:an alternative source for bone regeneration[J]. Stem Cells Int, 2018, 2018:1-11.
    [68] Pak J. Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adiposetissue-derived stem cells:a case series[J]. J Med Case Rep, 2011,5(1):296. Doi:10.1186/1752-1947-5-296.
    [69] Pak J, Lee J, Pak N, et al. Cartilage regeneration in humans with adipose tissue-derived stem cells and adipose stromal vascular fraction cells:updated status[J]. Int J Mol Sci, 2018, 19(7):2146.Doi:10.3390/ijms19072146.
    [70] Nguyen P D, Tran T D, Nguyen H T, et al. Comparative clinical observation of arthroscopic microfracture in the presence and absence of a stromal vascular fraction injection for osteoarthritis[J].Stem Cells Transl Med, 2017, 6(1):187-195.
    [71] Pak J, Lee J H, Park K S, et al. Efficacy of autologous adipose tissue-derived stem cells with extracellular matrix and hyaluronic acid on human hip osteoarthritis[J]. Biomed Res, 2017, 28(4):192-200.
    [72] Bansal H, Comella K, Leon J, et al. Intra-articular injection in the knee of adipose derived stromal cells(stromal vascular fraction)and platelet rich plasma for osteoarthritis[J]. J Transl Med, 2017,15(1):141. Doi:10.1186/s12967-017-1242-4.
    [73] Saygin D, Highland K. Microvascular involvement in systemic sclerosis and system lupus erythematosus[J]. Microcirculation,2019, 26(3):e12440. Doi:10.1111/micc.12440.
    [74] Granel B, Daumas A, Jouve E, et al. Safety tolerability and potential efficacy of injection of autologous adipose-derived stromal vascular fraction in the fingers of patients with systemic sclerosis:an open-label phase I trial[J]. Ann Rheum Dis, 2015,74(12):2175-2182.
    [75] Guillaume-Jugnot P, Daumas A, Magalon J, et al. State of the art autologous fat graft and adipose tissue-derived stromal vascular fraction injection for hand therapy in systemic sclerosis patients[J].Curr Res Transl Med, 2016, 64(1):35-42.
    [76] Giudice G, Filoni A, Maggio G, et al. Use of the stromal vascular fraction in intermediate-deep acute burns:a case with its own control[J]. J Burn Care Res, 2017, 39(5):846-849.
    [77] Atalay S, Coruh A, Deniz K. Stromal vascular fraction improves deep partial thickness burn wound healing[J]. Burns, 2014, 40(7):1375-1383.
    [78] Lim M, Wang W, Liang L, et al. Intravenous injection of allogeneic umbilical cord-derived multipotent mesenchymal stromal cells reduces the infarct area and ameliorates cardiac function in a porcine model of acute myocardial infarction[J]. Stem Cell Res Ther, 2018, 9(1):129. Doi:10.1186/s13287-018-0888-z.
    [79] Darinskas A, Paskevicius M, Apanavicius G, et al. Stromal vascular fraction cells for the treatment of critical limb ischemia:a pilot study[J]. J Transl Med, 2017, 15(1):143. Doi:10.1186/s12967-017-1243-3.
    [80] Cyranoski D. Korean deaths spark inquiry[J]. Nature, 2010,468(7323):485. Doi:10.1038/468485a.
    [81] McLean A K, Stewart C, Kerridge I. Untested, unproven, and unethical:the promotion and provision of autologous stem cell therapies in Australia[J]. Stem Cell Res Ther, 2015, 6(1):1-8.
    [82] Tocco I, Widgerow A D, Lalezari S, et al. Lipotransfer:the potential from bench to bedside[J]. Ann Plast Surg, 2014, 72(5):599-609.
    [83] Dykstra J A, Facile T, Patrick R J, et al. Concise review:fat and furious:harnessing the full potential of adipose-derived stromal vascular fraction[J]. Stem Cells Transl Med, 2017, 6(4):1096-1108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700