丙酮丁醇梭菌的基因编辑工具及代谢工程改造
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Genome editing tools and metabolic engineering in Clostridium acetobutylicum
  • 作者:薛闯 ; 杜广庆
  • 英文作者:XUE Chuang;DU Guang-qing;School of Bioengineering, Dalian University of Technology;
  • 关键词:丙酮丁醇梭菌 ; 基因编辑 ; ABE发酵 ; 丁醇
  • 英文关键词:Clostridium acetobutylicum;;genome editing;;ABE fermentation;;butanol
  • 中文刊名:微生物学杂志
  • 英文刊名:Journal of Microbiology
  • 机构:大连理工大学生物工程学院;
  • 出版日期:2019-08-15
  • 出版单位:微生物学杂志
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金项目(21576045,21376044);; 中央高校基本科研业务费专项资金资助项目(DUT16YQ103);; 辽宁省“兴辽英才计划”项目(XLYC1807269)
  • 语种:中文;
  • 页:7-15
  • 页数:9
  • CN:21-1186/Q
  • ISSN:1005-7021
  • 分类号:Q78
摘要
丙酮丁醇梭菌作为极具潜力的新型生物燃料丁醇的生产菌,受到各国研究学者的广泛关注。通过丙酮丁醇梭菌(ABE)发酵生产丁醇,由于生产成本高,限制了其工业化应用。随着基因组学和分子生物学的快速发展,适用于丙酮丁醇的基因编辑工具不断发展并应用于提高菌株的发酵性能。本文对丙酮丁醇梭菌基因编辑工具和代谢工程改造取得的进展进行综述。
        Clostridium acetobutylicum has gained worldwide attentions as a producer of bio-butanol. However, the bio-butanol production via acetone-butanol-ethanol(ABE) fermentation is not economically competitive, which has hampered its industrial application. With the development of genomics and molecular biology, the genome editing tools available for Clostridium acetobutylicum were developed and applicated for strain improvement. This review focuses on the current status of genome editing tools and metabolic engineering in Clostridium acetobutylicum.
引文
[1] Charubin K,Bennett RK,Fast AG,et al.Engineering Clostridium organisms as microbial cell-factories:challenges & opportunities[J].Metabolic engineering,2018,50:173-191.
    [2] Algayyim SJM,Wandel AP,Yusaf T,et al.Production and application of ABE as a biofuel[J].Renewable and sustainable energy reviews,2018,82:1195-1214.
    [3] Xue C,Zhao XQ,Liu C G,et al.Prospective and development of butanol as an advanced biofuel[J].Biotechnology advances,2013,31(8):1575-1584.
    [4] Nanda S,Golemi-Kotra D,McDermott J C,et al.Fermentative production of butanol:perspectives on synthetic biology[J].New biotechnology,2017,37:210-221.
    [5] Liao C,Seo SO,Celik V,et al.Integrated,systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum[J].Proceedings of the national academy of sciences,2015,112(27):8505-8510.
    [6] Jin Q,Qureshi N,Wang H,et al.Acetone-butanol-ethanol (ABE) fermentation of soluble and hydrolyzed sugars in apple pomace by Clostridium beijerinckii P260[J].Fuel,2019,244:536-544.
    [7] Ding JC,Xu GC,Han RZ,et al.Biobutanol production from corn stover hydrolysate pretreated with recycled ionic liquid by Clostridium saccharobutylicum DSM 13864[J].Bioresource technology,2016,199:228-234.
    [8] Gao M,Tashiro Y,Yoshida T,et al.Metabolic analysis of butanol production from acetate in Clostridium saccharoperbutylacetonicum N1-4 using 13 C tracer experiments[J].Rsc Advances,2015,5(11):8486-8495.
    [9] Sauer M.Industrial production of acetone and butanol by fermentation—100 years later[J].FEMS microbiology letters,2016,363(13):fnw134.
    [10] N?lling J,Breton G,Omelchenko MV,et al.Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum[J].Journal of bacteriology,2001,183(16):4823-4838.
    [11] Green EM,Bennett GN.Inactivation of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824[J].Applied biochemistry and biotechnology,1996,57(1):213-221.
    [12] Green EM,Boynton ZL,Harris LM,et al.Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824[J].Microbiology,1996,142(8):2079-2086.
    [13] Green EM,Bennett GN.Genetic manipulation of acid and solvent formation in Clostridium acetobutylicum ATCC 824[J].Biotechnology and bioengineering,1998,58(2/3):215-221.
    [14] Desai RP,Papoutsakis ET.Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum[J].Applied and environmental mircobiology,1999,65(3):936-945.
    [15] Harris LM,Welker NE,Papoutsakis ET.Northern,morphological,and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824[J].Journal of bacteriology,2002,184(13):3586-3597.
    [16] Mills DA,Manias DA,McKay LL,et al.Homing of a group II intron from Lactococcus lactis subsp.lactis ML3[J].Journal of bacteriology,1997,179(19):6107-6111.
    [17] Heap JT,Pennington OJ,Cartman ST,et al.The ClosTron:a universal gene knock-out system for the genus Clostridium[J].Journal of microbiological methods,2007,70(3):452-464.
    [18] Shao L,Hu S,Yang Y,et al.Targeted gene disruption by use of a group II intron (targetron) vector in Clostridium acetobutylicum[J].Cell research,2007,17(11):963.
    [19] 常振仪,严维,刘东风,等.CRISPR/Cas 技术研究进展[J].农业生物技术学报,2015,23(9):1196-1206.
    [20] Xue C,Zhao JB,Chen LJ,et al.Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum[J].Biotechnology advances,2017,35:310-322.
    [21] Li Q,Chen J,Minton NP,et al.CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii[J].Biotechnology journal,2016,11(7):961-972.
    [22] Wasels F,Jean-Marie J,Collas F,et al.A two-plasmid inducible CRISPR/Cas9 genome editing tool for Clostridium acetobutylicum[J].Journal of microbiological methods,2017,140:5-11.
    [23] Ventura JRS,Hu H,Jahng D.Enhanced butanol production in Clostridium acetobutylicum ATCC 824 by double overexpression of 6-phosphofructokinase and pyruvate kinase genes[J].Applied microbiology and biotechnology,2013,97(16):7505-7516.
    [24] Zhang Z,Song J,Han B.Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids[J].Chemical reviews,2016,117(10):6834-6880.
    [25] Tangney M,Galinier A,Deutscher J,et al.Analysis of the elements of catabolite repression in Clostridium acetobutylicum ATCC 824[J].Journal of molecular microbiology and biotechnology,2003,6(1):6-11.
    [26] Gu Y,Li J,Zhang L,et al.Improvement of xylose utilization in Clostridium acetobutylicum via expression of the talA gene encoding transaldolase from Escherichia coli[J].Journal of biotechnology,2009,143(4):284-287.
    [27] Ren C,Gu Y,Hu S,et al.Identification and inactivation of pleiotropic regulator CcpA to eliminate glucose repression of xylose utilization in Clostridium acetobutylicum[J].Metabolic engineering,2010,12(5):446-454.
    [28] Wu Y,Yang Y,Ren C,et al.Molecular modulation of pleiotropic regulator CcpA for glucose and xylose coutilization by solvent-producing Clostridium acetobutylicum[J].Metabolic engineering,2015,28:169-179.
    [29] Bruder M,Moo-Young M,Chung DA,et al.Elimination of carbon catabolite repression in Clostridium acetobutylicum—a journey toward simultaneous use of xylose and glucose[J].Applied microbiology and biotechnology,2015,99(18):7579-7588.
    [30] Xiao H,Gu Y,Ning Y,et al.Confirmation and elimination of xylose-metabolic bottlenecks in glucose-PTS-deficient Clostridium acetobutylicum to realize simultaneous utilization of glucose,xylose and arabinose[J].Applied and environmental mircobiology,2011,77(22):7886-7895.
    [31] Jin L,Zhang H,Chen L,et al.Combined overexpression of genes involved in pentose phosphate pathway enables enhanced D-xylose utilization by Clostridium acetobutylicum[J].Journal of biotechnology,2014,173:7-9.
    [32] Yang Y,Nie X,Jiang Y,et al.Metabolic regulation in solventogenic clostridia:regulators,mechanisms and engineering[J].Biotechnology advances,2018,36(4):905-914.
    [33] Cooksley CM,Zhang Y,Wang H,et al.Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway[J].Metabolic engineering,2012,14(6):630-641.
    [34] Jang YS,Woo HM,Im JA,et al.Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid[J].Applied microbiology and biotechnology,2013,97(21):9355-9363.
    [35] Jang YS,Im JA,Choi SY,et al.Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity[J].Metabolic engineering,2014,23:165-174.
    [36] Mermelstein LD,Papoutsakis ET,Petersen DJ,et al.Metabolic engineering of Clostridium acetobutylicum ATCC 824 for increased solvent production by enhancement of acetone formation enzyme activities using a synthetic acetone operon[J].Biotechnology and bioengineering,1993,42(9):1053-1060.
    [37] Sillers R,Al-Hinai MA,Papoutsakis ET.Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations[J].Biotechnology and bioengineering,2009,102(1):38-49.
    [38] Jang YS,Lee JY,Lee J,et al.Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum[J].MBio,2012,3(5):e00314-12.
    [39] Tummala SB,Welker NE,Papoutsakis ET.Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum[J].Journal of bacteriology,2003,185(6):1923-1934.
    [40] Jiang Y,Xu C,Dong F,et al.Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio[J].Metabolic engineering,2009,11(4-5):284-291.
    [41] Liu D,Yang Z,Wang P,et al.Towards acetone-uncoupled biofuels production in solventogenic Clostridium through reducing power conservation[J].Metabolic engineering,2018,47:102-112.
    [42] Patakova P,Kolek J,Sedlar K,et al.Comparative analysis of high butanol tolerance and production in clostridia[J].Biotechnology advances,2018,36(3):721-738.
    [43] Lepage C,Fayolle F,Hermann M,et al.Changes in membrane lipid composition of Clostridium acetobutylicum during acetone-butanol fermentation:effects of solvents,growth temperature and pH[J].Microbiology,1987,133(1):103-110.
    [44] Zhao Y,Hindorff LA,Chuang A,et al.Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824[J].Applied and environmental mircobiology,2003,69(5):2831-2841.
    [45] Bui LM,Lee JY,Geraldi A,et al.Improved n-butanol tolerance in Escherichia coli by controlling membrane related functions[J].Journal of biotechnology,2015,204:33-44.
    [46] Tomas CA,Beamish J,Papoutsakis ET.Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum[J].Journal of bacteriology,2004,186(7):2006-2018.
    [47] Zingaro KA,Papoutsakis ET.GroESL overexpression imparts Escherichia coli tolerance to i-,n-,and 2-butanol,1,2,4-butanetriol and ethanol with complex and unpredictable patterns[J].Metabolic engineering,2013,15:196-205.
    [48] Abdelaal AS,Ageez AM,El A EHAA,et al.Genetic improvement of n-butanol tolerance in Escherichia coli by heterologous overexpression of groESL operon from Clostridium acetobutylicum[J].3 Biotech,2015,5(4):401-410.
    [49] Mann MS,Dragovic Z,Schirrmacher G,et al.Over-expression of stress protein-encoding genes helps Clostridium acetobutylicum to rapidly adapt to butanol stress[J].Biotechnology letters,2012,34(9):1643-1649.
    [50] Papoutsakis ET.Engineering solventogenic clostridia[J].Current opinion in biotechnology,2008,19(5):420-429.
    [51] Jones SW,Paredes CJ,Tracy B,et al.The transcriptional program underlying the physiology of clostridial sporulation[J].Genome biology,2008,9(7):R114.
    [52] Harris LM,Welker NE,Papoutsakis ET.Northern,morphological,and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824[J].Journal of bacteriology,2002,184(13):3586-3597.
    [53] Jones SW,Tracy BP,Gaida SM,et al.Inactivation of σF in Clostridium acetobutylicum ATCC 824 blocks sporulation prior to asymmetric division and abolishes σE and σG protein expression but does not block solvent formation[J].Journal of bacteriology,2011,193(10):2429-2440.
    [54] Tracy BP,Jones SW,Papoutsakis ET.Inactivation of σE and σG in Clostridium acetobutylicum illuminates their roles in clostridial-cell-form biogenesis,granulose synthesis,solventogenesis,and spore morphogenesis[J].Journal of bacteriology,2011,193(6):1414-1426.
    [55] Scotcher MC,Bennett GN.SpoIIE regulates sporulation but does not directly affect solventogenesis in Clostridium acetobutylicum ATCC 824[J].Journal of bacteriology,2005,187(6):1930-1936.
    [56] Sillers R,Chow A,Tracy B,et al.Metabolic engineering of the non-sporulating,non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance[J].Metabolic engineering,2008,10(6):321-332.
    [57] Steiner E,Dago AE,Young DI,et al.Multiple orphan histidine kinases interact directly with Spo0A to control the initiation of endospore formation in Clostridium acetobutylicum[J].Molecular microbiology,2011,80(3):641-654.
    [58] Xu M,Zhao J,Yu L,et al.Engineering Clostridium acetobutylicum with a histidine kinase knockout for enhanced n-butanol tolerance and production[J].Applied microbiology and biotechnology,2015,99(2):1011-1022.
    [59] Herman NA,Kim SJ,Li JS,et al.The industrial anaerobe Clostridium acetobutylicum uses polyketides to regulate cellular differentiation[J].Nature communications,2017,8(1):1514.
    [60] Dong H,Tao W,Zhu L,et al.CAC2634-disrupted mutant of Clostridium acetobutylicum can be electrotransformed in air[J].Letters in applied microbiology,2011,53(3):379-382.
    [61] Lütke-Eversloh T.Application of new metabolic engineering tools for Clostridium acetobutylicum[J].Applied microbiology and biotechnology,2014,98(13):5823-5837.
    [62] Mermelstein LD,Papoutsakis ET.In vivo methylation in Escherichia coli by the Bacillus subtilis phage Φ3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824[J].Applied and environmental mircobiology,1993,59(4):1077-1081.
    [63] Dong H,Zhang Y,Dai Z,et al.Engineering Clostridium strain to accept unmethylated DNA[J].PLoS one,2010,5(2):e9038.
    [64] Formanek J,Mackie R,Blaschek H P.Enhanced butanol production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 percent maltodextrin or glucose[J].Applied and environmental mircobiology,1997,63(6):2306-2310.
    [65] Xue C,Zhao J,Lu C,et al.High-titer n-butanol production by Clostridium acetobutylicum JB200 in fed-batch fermentation with intermittent gas stripping[J].Biotechnology and bioengineering,2012,109(11):2746-2756.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700