Magma chamber growth models in the upper crust: A review of the hydraulic and inertial constraints
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Magma chamber growth models in the upper crust: A review of the hydraulic and inertial constraints
  • 作者:Eugenio ; Aragón ; Fernando ; J.D'Eramo ; Lucio ; P.Pinotti ; Manuel ; Demartis ; José ; María ; Tubía ; Roberto ; F.Weinberg ; Jorge ; E.Coniglio
  • 英文作者:Eugenio Aragón;Fernando J.D'Eramo;Lucio P.Pinotti;Manuel Demartis;José María Tubía;Roberto F.Weinberg;Jorge E.Coniglio;Centro de Investigaciones Geologicas (CONICET-Universidad Nacional de La Plata).Diagonal 113 N° 275;Universidad Nacional de Río Cuarto, CONICET, Departamento de Geología (Ruta Nac.N° 36 Km 601);Departamento de Geodinámica, Universidad del País Vasco (UPV/EHU);School of Earth, Atmosphere and Environment, Monash University;
  • 英文关键词:Pascal's principle;;Geologic hydraulic jack;;Emplacement;;Sills growth;;Fluid hammer
  • 中文刊名:Geoscience Frontiers
  • 英文刊名:地学前缘(英文版)
  • 机构:Centro de Investigaciones Geologicas (CONICET-Universidad Nacional de La Plata).Diagonal 113 N° 275;Universidad Nacional de Río Cuarto, CONICET, Departamento de Geología (Ruta Nac.N° 36 Km 601);Departamento de Geodinámica, Universidad del País Vasco (UPV/EHU);School of Earth, Atmosphere and Environment, Monash University;
  • 出版日期:2019-05-15
  • 出版单位:Geoscience Frontiers
  • 年:2019
  • 期:03
  • 基金:projects UNLP 11N/689 and 790, CONICET PID 00688:Agencia Nacional PICT 0910/13 and PICT 1754/16;; the GIU17/033 (UPV/EHU) and CGL201782976-P (AEI/FEDER, UE) projects
  • 语种:英文;
  • 页:412-419
  • 页数:8
  • CN:11-5920/P
  • ISSN:1674-9871
  • 分类号:P588.11
摘要
Finite volumes of magma moving in confinement, store hydraulic potential energy for the generation,control and transmission of power. The Pascal's principle in a hydraulic jack arrangement is used to model the vertical and lateral growth of sills. The small input piston of the hydraulic jack is equivalent to the feeder dike, the upper large expansible piston equivalent to the magmatic chamber and the inertial force of the magma in the dike is the input force. This arrangement is particularly relevant to the case of sills expanding with blunt tips, for which rapid fracture propagation is inhibited. Hydraulic models concur with experimental data that show that lateral expansion of magma into a sill is promoted when the vertical ascent of magma through a feeder dike reaches the bottom contact with an overlying, flat rigid-layer. At this point, the magma is forced to decelerate, triggering a pressure wave through the conduit caused by the continued ascent of magma further down(fluid-hammer effect). This pressure wave can provide overpressure enough to trigger the initial hydraulic lateral expansion of magma into an incipient sill, and still have enough input inertial force left to continue feeding the hydraulic system. The lateral expansion underneath the strong impeding layer, causes an area increase and thus, further hydraulic amplification of the input inertial force on the sides and roof of the incipient sill, triggering further expansion in a self-reinforcing process. Initially, the lateral pressure increase is larger than that in the roof allowing the sill to expand. However, expansion eventually increases the total integrated force on the roof allowing its uplift into either a laccolith, if the roof preserves continuity, or into a piston bounded by a circular set of fractures. Hydraulic models for shallow magmatic chambers, also suggest that laccolith-like intrusions require the existence of a self-supported chamber roof. In contrast, if the roof of magmatic chambers loses the self-supporting capacity, lopoliths and calderas should be expected for more or less dense magmas, respectively, owing to the growing influence of the density contrast between the host rock and the magma.
        Finite volumes of magma moving in confinement, store hydraulic potential energy for the generation,control and transmission of power. The Pascal's principle in a hydraulic jack arrangement is used to model the vertical and lateral growth of sills. The small input piston of the hydraulic jack is equivalent to the feeder dike, the upper large expansible piston equivalent to the magmatic chamber and the inertial force of the magma in the dike is the input force. This arrangement is particularly relevant to the case of sills expanding with blunt tips, for which rapid fracture propagation is inhibited. Hydraulic models concur with experimental data that show that lateral expansion of magma into a sill is promoted when the vertical ascent of magma through a feeder dike reaches the bottom contact with an overlying, flat rigid-layer. At this point, the magma is forced to decelerate, triggering a pressure wave through the conduit caused by the continued ascent of magma further down(fluid-hammer effect). This pressure wave can provide overpressure enough to trigger the initial hydraulic lateral expansion of magma into an incipient sill, and still have enough input inertial force left to continue feeding the hydraulic system. The lateral expansion underneath the strong impeding layer, causes an area increase and thus, further hydraulic amplification of the input inertial force on the sides and roof of the incipient sill, triggering further expansion in a self-reinforcing process. Initially, the lateral pressure increase is larger than that in the roof allowing the sill to expand. However, expansion eventually increases the total integrated force on the roof allowing its uplift into either a laccolith, if the roof preserves continuity, or into a piston bounded by a circular set of fractures. Hydraulic models for shallow magmatic chambers, also suggest that laccolith-like intrusions require the existence of a self-supported chamber roof. In contrast, if the roof of magmatic chambers loses the self-supporting capacity, lopoliths and calderas should be expected for more or less dense magmas, respectively, owing to the growing influence of the density contrast between the host rock and the magma.
引文
Bunger, A.P., Cruden, A.R., 2011. Modeling the growth of laccoliths and large mafic sills:role of magma body forces. Journal of Geophysical Research 116, B02203.
    Clemens, J.D., 1998. Observations on the origins and ascent mechanisms of granitic magmas. Journal of the Geological Society London 155(5), 843-851.
    Coleman, D.S., Gray, W., Glazner, A.F., 2004. Rethinking the emplacement and evolution of zoned plutons:geochronologic evidence for incremental assemblyof the Tuolomne Intrusive Suite. California Geology 32, 433-436. https://doi.org/10.1130/g20220.1.
    Corry, C.E., 1988. Laccoliths:Mechanics of Emplacement and Growth, vol. 210.Special Paper Geological Society of America, 110 pp.
    Cruden, A.R., 1998. On the emplacement of tabular granites. Journal of the Geological Society London 155(5), 853-862.
    Cruden, A.R., McCaffrey, K.J.W., 2001. Growth of plutons by floor subsidence:implications for rates of emplacement, intrusion spacing and melt extraction mechanisms. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy 26(4-5), 303-315.
    Cruden, A.R., McCaffrey, K.J.W., 2002. Different scaling laws for sills, laccoliths and plutons:mechanical thresholds on roof lifting and floor depression. In:Breitkreuz, C., Mock, A., Petford, N.(Eds.), First International Workshop:Physical Geology of Subvolcanic Systems-Laccoliths, Sills and Dikes(LASI), Volume20 of Wissenschartliche Mitteilungen des Intitutes für Geologie der TU Bergakademie Freiberg, pp. 15-17.
    Cruden, A.R., McCaffrey, K.J.W., Bunger, A.P., 2017. Geometric scaling of tabular igneous intrusions:implications for emplacement and growth. In:Breitkreuz, C, Mock, A.,Petford, N.(Eds.), Physical Geology of Shallow Magmatic Systems Dykes, Sills and Laccoliths. Advances in Volcanology(in press).
    Currier, R.M., Marsh, B.D., 2015. Mapping real time growth of experimental laccoliths:the effect of solidification on the mechanics of magmatic intrusión.Journal of Volcanology and Geothermal Research 302, 211-224.
    Francis, E.H., 1982. Magma and sediment-1:emplacement mechanism of late Carboniferous tholeiite sills in northern Britain. Journal of the Geological Society of London 139,1-20.
    Gilbert, G.K., 1877. Report on the Geology of the Henry Mountains. U. S.Geographical and Geological Survey, Rocky Mountains Region, 170 pp.
    Glazner, A.F., Bartley, J.M., Coleman, D.S., Gray. W., Taylor, R.Z., 2004. Are plutons assembled over millions of years by amalgamation from small magma chambers? Geological Society of America Today 14(4/5), 4-11.
    Glazner, A.F., Bartley, J.M., 2006. Is stoping a volumetrically significant pluton emplacement process? The Geological Society of America Bulletin 118,1185-1195. https://doi.org/10.1130/b25738.
    Hansen, J., 2015. A numerical approach to sill emplacement in isotropic media:do saucer-shaped sills represent'natural'intrusive tendencies in the shallow crust? Tectonophysics 664.125-138.
    Holmes, A., 1944. Principles of Physical Geology. Nelson, London, 532 pp.
    Jackson, M.D.., Pollard, D.D., 1988. The laccolith-stock controversy:new results from the southern Henry Mountains, Utah. The Geological Society of America Bulletin 100.117-139.
    Kavanagh, J.L, Menand, T., Sparks, R.S.J., 2006. An experimental investigation of sill formation and propagation in layered elastic media. Earth and Planetary Science Letters 245(3-4), 799-813.
    Kerr, A.D., Pollard, D.D., 1998. Toward more realistic formulations for the analysis of laccoliths. Journal of Structural Geology 20(12), 1783-1793.
    Magee, C., Muirhead, J.D., Karvelas, A., Holford, S.P., Jackson, C.A.L, Bastow, I.D.,Schofield, N., Stevenson, C.T.E., McLean, C., McCarthy. W., Shtukert, O., 2016.Lateral magma flow in mafic sill complexes. Geosphere 12(3), 809-841.
    Mathieu, L., van Wyk de Vries, B., Holohan, E.P., Troll, V.R., 2008. Dikes, cups, saucers and sills:analogue experiments on magma intrusion into brittle rocks. Earth and Planetary Science Letters 271(1-4). 1-13.
    McCaffrey, K.J.W., Cruden, A., 2002. Dimensional data and growth models for intrusions. In:Breitkreuz, C., Mock, A., Petford, N.(Eds.), First International Workshop:Physical Geology of Subvolcanic Systems-Laccoliths, Sills and Dikes(LASI), volume 20 of Wissenschartliche Mitteilungen des Institutes fur Geologie der TU Bergakademie Freiberg, pp. 37-39.
    McCaffrey, K., Petford, N., 1997. Are granitic plutons scale invariant? Journal of the Geological Society London 154(1), 1-4.
    Menand, T., 2008. The mechanics and dynamics of sills in layered elastic rocks and their implications for the growth of laccoliths and other igneous complexes.Earth and Planetary Science Letters 267(1-2), 93-99.
    Menand, T., 2011. Physical controls and depth of emplacement of igneous bodies:a review. Tectonophysics 500(1-4), 11-19.
    Michel, J., Baumgartner, L, Putlitz, B., Schaltegger, U., Ovtcharova, M., 2008. Incremental growth of the Patagonian Torres del Paine laccolith over 90 k.y. Geology36(6). 459-462.
    Morgan, S., Stanik, A., Horsman, E., Tikoff, B., de Saint Blanquat, M., Habert, G., 2008.Emplacement of multiple magma sheets and wall-rock deformation:Trachyte Mesa intrusion, Henry Mountains, Utah. Journal of Structural Geology 30(4), 491-512.
    Murase, T., McBirney, A.R., 1973. Properties of some common igneous rocks and their melts at high temperatures. Geoogical Society of America Bulletin v84;3563-3592.
    Petford, N., Cruden, A.R., McCaffrey, K.J.W., Vigneresse, J.L, 2000. Granitic magma formation, transport and emplacement in the Earth's crust. Nature 408(6813),669-673.
    Petford, N., Kerr, R.C., Lister,J.R., 1993. Dike transportofgranitoid magmas. Geology 21(9),845-848.
    Pitcher, W.S., 1993. The Nature and Origin of Granite. Chapman&Hall. Glasgow, 321 p.
    Pollard, D.D., 1973. Derivation and evaluation of mechanical model for sheet intrusions. Tectonophysics 19(3), 233-269.
    Rivalta, E., Bottinger, M., Dahm, T., 2005. Buoyancy-driven fracture ascent:experiments in layered gelatine. Journal of Volcanology and Geothermal Research 144(1-4), 273-285.
    Roman-Berdiel, T.. Gapais, D., Brun, J.P., 1995. Analogue models of laccolith formation. Journal of Structural Geology 17(9), 1337-1346. https://doi.org/10.1016/0191-8141(95)00012-3.
    Saleeby, J.B., Ducea, M.N., Clemens-Knott, D., 2003. Production and loss of highdensity batholithic root, southern Sierra Nevada, California. Tectonics 22,1064.
    Spera, F., 2000. Physical properties of magma. In:Sigurdsson, H.(Ed.), Encyclopedia of Volcanoes. Academic, San Diego, California, pp. 171-190.
    Vigneresse. J.L, Clemens, J.D., 2000. Granitic magma ascent and emplacement:neither diapirism nor buoyancy. Journal of the Geological Society London 174(1).1-19.
    Weinberg. R.F., Podladchikov, Y., 1994. Diapiric ascent of magmas through power law crust and mantle. Journal of Geophysical Research:Solid Earth 99(B5),9543-9559.
    Weinberg, R.F., Regenauer-Lieb, K., 2010. Ductile fractures and magma migration from source. Geology 38(4), 363-366.
    Wiliam, H., McBirney, A.R., 1979. Volcanology. Freeman, Cooper and Company, San Francisco, p. 397.
    Zenzri, H., Keer, L.M., 2001. Mechanical analyses of the emplacement of laccoliths and lopoliths. Journal of Geophysical Research:Solid Earth 106(B7),13781-13792.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700