Geochemistry of an Alaskan-type mafic-ultramafic complex in Eastern Desert, Egypt:New insights and constraints on the Neoproterozoic island arc magmatism
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Geochemistry of an Alaskan-type mafic-ultramafic complex in Eastern Desert, Egypt:New insights and constraints on the Neoproterozoic island arc magmatism
  • 作者:Shehta ; E.Abdallah ; Shehata ; Ali ; Mohamed ; A.Obeid
  • 英文作者:Shehta E.Abdallah;Shehata Ali;Mohamed A.Obeid;Geology Department, Faculty of Science, Zagazig University;Geology Department, Faculty of Science, Minia University;Geology Department, Faculty of Science, Fayoum University;Faculty of Petroleum and Mining Sciences, Alexandria University (Matrouh Branch);
  • 英文关键词:Alaskan-type complex;;Neoproterozoic;;Arc magmatism;;Eastern desert;;Egypt
  • 中文刊名:Geoscience Frontiers
  • 英文刊名:地学前缘(英文版)
  • 机构:Geology Department, Faculty of Science, Zagazig University;Geology Department, Faculty of Science, Minia University;Geology Department, Faculty of Science, Fayoum University;Faculty of Petroleum and Mining Sciences, Alexandria University (Matrouh Branch);
  • 出版日期:2019-05-15
  • 出版单位:Geoscience Frontiers
  • 年:2019
  • 期:03
  • 语种:英文;
  • 页:150-164
  • 页数:15
  • CN:11-5920/P
  • ISSN:1674-9871
  • 分类号:P534.3;P587
摘要
Mikbi intrusion(MI) is a part of the Neoproterozoic Nubian Shield located along the NE-SW trending major fracture zones prevailing southern Eastern Desert of Egypt. In this study, we present for the first time detailed mineralogical and bulk-rock geochemical data to infer some constraints on the parental magma genesis and to understand the tectonic processes contributed to MI formation. Lithologically, it is composed of fresh peridotite, clinopyroxenite, hornblendite, anorthosite, gabbronorite, pyroxene amphibole gabbro, amphibole gabbro and diorite. All rocks have low Th/La ratios(mostly <0.2) and lack positive Zr and Th anomalies excluding significant crustal contamination. They show very low concentrations of Nb, Ta, Zr and Hf together with sub-chondritic ratios of Nb/Ta(2-15) and Zr/Hf(19-35),suggesting that their mantle source was depleted by earlier melting extraction event. The oxygen fugacity(logfO_2) estimated from diorite biotite is around the nickel-nickel oxide buffer(NNO) indicating crystallization from a relatively oxidized magma. Amphiboles in the studied mafic-ultramafic rocks indicate relative oxygen fugacity(i.e. ΔNNO; nickel-nickel oxide) of 0.28-3 and were in equilibrium mostly with 3.77-8.24 wt.% H_2 O_(melt)(i.e. water content in the melt), consistent with the typical values of subduction-related magmas. Moreover, pressure estimates(0.53-6.79 kbar) indicate polybaric crystallization and suggest that the magma chamber(s) was located at relatively shallow crustal levels. The enrichment in LILE(e.g., Cs, Ba, K and Sr) and the depletion in HFSE(e.g., Th and Nb) relative to primitive mantle are consistent with island arc signature. The olivine, pyroxene and amphibole compositions also reflect arc affinity. These inferences suggest that their primary magma was derived from partial melting of a mantle source that formerly metasomatized in a subduction zone setting. Clinopyroxene and bulkrock data are consistent with orogenic tholeiitic affinity. Consequently, the mineral and bulk-rock chemistry strongly indicate crystallization from hydrous tholeiitic magma. Moreover, their trace element patterns are subparallel indicating that the various rock types possibly result from differentiation of the same primary magma. These petrological, mineralogical and geochemical characteristics show that the MI is a typical Alaskan-type complex.
        Mikbi intrusion(MI) is a part of the Neoproterozoic Nubian Shield located along the NE-SW trending major fracture zones prevailing southern Eastern Desert of Egypt. In this study, we present for the first time detailed mineralogical and bulk-rock geochemical data to infer some constraints on the parental magma genesis and to understand the tectonic processes contributed to MI formation. Lithologically, it is composed of fresh peridotite, clinopyroxenite, hornblendite, anorthosite, gabbronorite, pyroxene amphibole gabbro, amphibole gabbro and diorite. All rocks have low Th/La ratios(mostly <0.2) and lack positive Zr and Th anomalies excluding significant crustal contamination. They show very low concentrations of Nb, Ta, Zr and Hf together with sub-chondritic ratios of Nb/Ta(2-15) and Zr/Hf(19-35),suggesting that their mantle source was depleted by earlier melting extraction event. The oxygen fugacity(logfO_2) estimated from diorite biotite is around the nickel-nickel oxide buffer(NNO) indicating crystallization from a relatively oxidized magma. Amphiboles in the studied mafic-ultramafic rocks indicate relative oxygen fugacity(i.e. ΔNNO; nickel-nickel oxide) of 0.28-3 and were in equilibrium mostly with 3.77-8.24 wt.% H_2 O_(melt)(i.e. water content in the melt), consistent with the typical values of subduction-related magmas. Moreover, pressure estimates(0.53-6.79 kbar) indicate polybaric crystallization and suggest that the magma chamber(s) was located at relatively shallow crustal levels. The enrichment in LILE(e.g., Cs, Ba, K and Sr) and the depletion in HFSE(e.g., Th and Nb) relative to primitive mantle are consistent with island arc signature. The olivine, pyroxene and amphibole compositions also reflect arc affinity. These inferences suggest that their primary magma was derived from partial melting of a mantle source that formerly metasomatized in a subduction zone setting. Clinopyroxene and bulkrock data are consistent with orogenic tholeiitic affinity. Consequently, the mineral and bulk-rock chemistry strongly indicate crystallization from hydrous tholeiitic magma. Moreover, their trace element patterns are subparallel indicating that the various rock types possibly result from differentiation of the same primary magma. These petrological, mineralogical and geochemical characteristics show that the MI is a typical Alaskan-type complex.
引文
Abd El-Rahman, Y., Polat, A., Dilek, Y., Fryer, B.J., EI-Sharkawy, M., Sakran, S., 2009a.Geochemistry and tectonic evolution of the Neoproterozoic incipient arc-forearc crust in the Fawakhir area, Central Eastern Desert, Egypt. Precambrian Research 175.116-134.
    Abd El-Rahman, Y., Polat, A., Dilek, Y., Fryer, B.J.. EI-Sharkawy, M., Sakran, S., 2009b.Geochemistry and tectonic evolution of the neoproterozoic Wadi Ghadir ophiolite, Eastern Desert, Egypt. Lithos 113.158-178.
    Abd El-Rahman, Y., Helmy, H.M., Shibata, T., Yoshikawa, M., Arai, S., Tamura, A.,2012. Mineral chemistry of the Neoproterozoic Alaskan-type Akarem Intrusion with special emphasis on amphibole:implications for the pluton origin and evolution of subducction-related magma. Lithos 155, 410-425.
    Abdel Halim, A., Helmy, H.M., Abdel-Rahman, Y.M., Shibata, T., El-Mahallawi, M.M.,Yoshikawa, M., Arai, S., 2016. Petrology of the Motaghairat mafic-ultramafic complex, Eastern Desert, Egypt:a high-Mg post-collisional extension-related layered intrusion. Journal of Asian Earth Sciences 116,164-180.
    Abdel-Karim, A.M., Ali, S., El-Shafei, S.A., 2017. Mineral chemistry and geochemistry of ophiolitic ultramafics from central Eastern Desert, Egypt:a case for contaminated mantle-derived magma. Geophysical Research Abstracts 19.EGU2017-16680-1, EGU General Assembly 2017.
    Abdel-Karim, A.M., Ali, Sh., Helmy, H.M., El-Shafei, Sh.A., 2016. Fore-arc setting of the Gerf ophiolite, Eastern Desert, Egypt:evidence from mineral chemistry and geochemistry of ultramafites. Lithos 263, 52-65.
    Ahmed, A.A., 1991. Ultrabasic and basic intrusions of Um Ginud and Motaghairat area, South Eastern Desert, Egypt. Bulletin of the Faculty of Science-Assuit University 20,183-213.
    Ahmed, A.H., 2013. Highly depleted harzburgite-dunite-chromitite complexes from the Neoproterozoic ophiolite, south Eastern Desert, Egypt:a possible recycled upper mantle lithosphere. Precambrian Research 233,173-192.
    Ahmed, A.H., Helmy, H.M., Arai, S., Yoshikawa, M., 2008. Magmatic unmixing in spinel from late Precambrian concentrically-zoned mafic-ultramafic intrusions,Eastern Desert, Egypt. Lithos 104, 85-98.
    Ali, K.A., Stern, R.J., Manton, W.I., Kimura, J., Khamis, H.A.I., 2009. Geochemistry Ndisotopes and U-Pb SHRIMP zircon dating of Neoproterozoic volcanic rocks from the Central Eastern Desert of Egypt:new insight into the-750 Ma crust-formingevent. Precambrian Research 171,1-22.
    Barrett, T.J., MacLean, W.H., 1994. Chemostratigraphy and hydrothermal alteration in exploration for VHMS deposits in greenstone and younger volcanic rocks. In:Lentz, D.R.(Ed.), Alteration and Alteration Processes Associated with Ore-Forming Systems. Geological Association of Canada, Short Course Notes,vol. 11, pp. 433-467.
    Batanova, V.C., Pertsev, A.N., Kamenetsky, V.S., Ariskin, A.A., Mochalov, A.G.,Sobolev, A.V., 2005. Crustal evolution of island-arc ultramafic magma:galmoenan pyroxenite-dunite plutonic complex, Koryak, Highland(Far East Russia). Journal of Petrology 46,1345-1366.
    Beard, J.S., 1986. Characteristic mineralogy of arc-related cumulate gabbros:implications for the tectonic setting of gabbroic plutons and for andesite genesis.Geology 14, 848-851.
    Beard, J.S., Barker, F., 1989. Petrology and tectonic significance of gabbros, tonalities, shoshonites and anorthosites in a late Paleozoic arc-root complex in the Wrangellia terrane, southern Alaska. The Journal of Geology 97,667-683.
    Candela, P.A., 1989. Felsic magmas, volatiles, and metallogenesis. In:Whitney, J.A.,Naldrett, A.J.(Eds.), Ore Deposition Associated with Magmas. Review in Economic Geology, vol. 4, pp. 223-233.
    Cathelineau, M., Nieva, D., 1985. A chlorite solid solution geothermometer, the LosAzufres(Mexico)geothermal system. Contributions to Mineralogy and Petrology 91, 235-244.
    Delavari, M., Amini, S., Saccani, E., Beccaluva, L., 2009. Geochemistry and petrogenesis of mantle peridotites from the Nehbandan ophiolitic complex, eastern Iran. Journal of Applied Sciences 9, 2671-2687.
    Dilek, Y., Furnes, H., 2011. Ophiolite genesis and global tectonics:geochemical and tectonic fingerprinting of ancient oceanic lithosphere. The Geological Society of America Bulletin 123, 387-411.
    Dixon, T.H., 1981. Gebel Dahanib, Egypt:a late Precambrian layered sill of komatiitic composition. Contributions to Mineralogy and Petrology 76.42-52.
    Droop, G.T.R., 1987. A general equation for estimating Fe~(3+)concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine 51.431-435.
    Abd El-Salam, M.G., Stern, R.J., 1996. Sutures and shear zones in the Arabian-Nubian Shield. Journal of African Earth Science 23, 289-310.
    Eyuboglu, Y., Dilek, Y., Bozkurt, E., Bektas, O., Rojay, B., Sen, C., 2010. Structure and geochemistry of an Alaskan-type ultramafic-mafic complex in the Eastern Pontides, NE Turkey. Gondwana Research 18, 230-252.
    Farahat, E.S., Helmy, H.M., 2006. Abu hamamid neoproterozoic Alaskan-type complex, south Eastern Desert, Egypt. Journal of African Earth Sciences 45,187-197.
    Fleet, M.E., Barnett, R.L, 1978. Al~((Ⅳ))/Al~((Ⅵ))partitioning in calciferous amphiboles from the mine, Sudbury, Ontario. The Canadian Mineralogist 16, 527-532.
    Garson, M.S., Krs, M., 1976. Geophysical and geological evidence of the relationship of Red Sea transverse tectonics to ancient fractures. The Geological Society of America Bulletin 87,169-181.
    Giret, A., Bonin, B., Léger, J.M., 1980. Amphibole compositional trend in oversaturated and undersaturated alkaline plutonic ring complexes. The Canadian Mineralogist 18, 481-495.
    Habtoor, A., Ahmed, A.H., Harbi, H., 2016. Petrogenesis of the Alaskan-type mafic-ultramafic complex in the Makkah quadrangle, western Arabian Shield. Saudi Arabia. Lithos 263, 33-51.
    Hawkesworth. C.J., Gallagher. K., Hergt, J.M., McDermott, F, 1993. Mantle and slab contributions in arc magmas. Annual Reviews inEarth and Planetary Science 21,175-204.
    Helmy, H.M., 2004. Cu-Ni-PGE mineralization in the Genina Gharnia mafic-ultramafic intrusion, Eastern Desert, Egypt. The Canadian Mineralogist42, 351-370.
    Helmy, H.M., 2005. Melonite group minerals and other tellurides from three Cu-Ni-PGE prospects, Eastern Desert, Egypt. Ore Geology Reviews 26,305-324.
    Helmy, H.M., El Mahallawi, M.M., 2003. Gabbro Akarem mafic-ultramafic complex,Eastern Desert, Egypt:a late Precambrian analogue of Alaskan-type complexes.Mineralogy and Petrology 77, 85-108.
    Helmy, H.M., Mogessie, A.. 2001. Gabbro Akarem, Eastern Desert, Egypt:Cu-Ni-PGE mineralization in a concentrically zoned mafic-ultramafic complex.Mineralium Deposita 36, 58-71.
    Helmy, H.M., Yoshikawa, M., Shibata, T., Arai, S., Tamura, A.. 2008. Corona structure from arc mafic-ultramafic cumulates:the role and chemical characteristics of late-magmatic hydrous liquids. Journal of Mineralogical and Petrological Science 103, 333-344.
    Helmy, H.M., Abd El-Rahman, Y.M., Yoshikawa, M., Shibata, T., Arai, S., Tamura, A.,Kagami, H., 2014. Petrology and Sm-Nd dating of the Genina Gharbia Alaskan-type complex(Egypt):insights into deep levels of Neoproterozoic island arcs. Lithos 198-199, 263-280.
    Helmy, H.M., Yoshikawa, M., Shibata, T., Arai, S., Kagami, H., 2015. Sm-Nd dating and petrology of Abu Hamamid intrusion, Eastern Desert, Egypt:a case of Neoproterozoic Alaskan-type complex in a back-arc setting. Precambrian Research 258, 234-246.
    Henry, D.J., Guidotti, C.V., Thomson, J.A., 2005. The Tisaturation surface for low--to-medium pressure metapelitic biotites:implications for geothermometry and Ti-substitution mechanisms. American Mineralogist 90, 316-328. https://doi.org/10.2138/am.2005.1498.
    Herzberg, C., Asimow, P.D., 2008. Petrology of some oceanic island basalts:PRIMELT2.XLS software for primary magma calculation. Geochemistry, Geophysics,Geosystems 9. https://doi.org/10.1029/2008GC002057.
    Hey, M.H., 1954. A new review of the chlorites. Mineralogical Magazine 30,277-292.
    Himmelberg, G.R., Loney, R.A., 1995. Characteristics and petrogenesis of Alaskan-type ultramafic-mafic intrusions, Southeastern Alaska. U. S. Geological Survey Professional Paper 1564, 47.
    Himmelberg, R.G., Loney, RA., Craig, J.T., 1986. Petrogenesis of the ultramafic complex at the Blashke Islands, southeastern Alaska. US Geological Survey Bulletin 1662,1-14.
    Irvine, T.N., 1967. Chromian spinel as a petrogenetic indicator. PartⅡ. Petrogenetic applications. Canadian Journal of Earth Sciences 4, 72-103.
    Irvine, T.N., 1974. Petrology of the Duke island ultramafic complex, southeastern Alaska. Geological Society of America Memoirs 138, 240.
    Jan, M.Q., Windley, B.F., 1990. Chromian spinel-silicate chemistry in ultramafic rocks of the jijal complex, Northwest Pakistan. Journal of Petrology 31, 667-715.
    Johnson, P.R., Andresen, A., Collins, A.S., Fowler,A.R., Fritz, H., Ghebreab, W.,Kusky, T., Stem, R.J., 2011. Late Cryogenian-Ediacaran history of the ArabianNubian Shield:a review of depositional,plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen. Journal of African Earth Sciences 61,167-232.
    Kakar, M.I., Kerr, A.C., Mahmood, K., Collins, A.S., Khan, M., McDonald, I., 2014.Supra-subduction zone tectonic setting of the Muslim Bagh Ophiolite,northwestern Pakistan:insights from geochemistry and petrology. Lithos202-203.190-206.
    Khedr, M.Z., Arai, S., 2016. Petrology of a neoproterozoic Alaskan-type complex from the Eastern Desert of Egypt:implications for mantle heterogeneity. Lithos 263,15-32.
    Krause, J., Briigmann, G.E., Pushkarev, E.V., 2007. Accessory and rock forming minerals monitoring the evolution of zoned mafic-ultramafic complexes in the Central Ural Mountains. Lithos 95.19-42.
    Kroner, A., Stern, R.J., Dawoud, A.S., Compston, W., Reischmann, T., 1987. The Pan-African continental margin in northeastern Africa:evidence from a geochronological study of granulites at Sabaloka, Sudan. Earth and Planetary Science Letters 85, 91-104.
    Kr(o|¨)ner, A., Windley, B.F., Badarch, G., Tomurtogoo, O., Hegner, E., Jahn, B.M.,Gruschka, S., Khain, E.V., Demoux, A., Wingate, M.T.D., 2007. Accretionary growth and crust formation in central Asian orogenic belt and comparison with the Arabian-nubian shield. Geological Society of America Memoirs 200,181-209.
    Le Bas, M.J., 1962. The role of aluminum in igneous clinopyroxenes with relation to their parentage. American Journal of Science 260, 267-288.
    Leake, B.E., 1971. On aluminous and edenitic amphiboles. Mineralogical Magazine38, 389-407.
    Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D.,Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J.,Mandarino, J., Maresch, W.V., Nickel, E.H., Schumaker, J.C., Smith, D.C.,Stephenson, N.C.N., Ungaretti, L, Whittaker, E.J.W., Youzhi, G., 1997. Nomenclature of amphiboles:report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. The Canadian Mineralogist 35, 219-246.
    Leterrier, J., Maury, R.C., Thonon, P., Girard, D., Marchal, M., 1982. Clinopyroxene composition as a method of identification of the magmatic affinities of paleovolcanic series. Earth and Planetary Science Letters 59,139-154.
    Loucks, R.R., 1990. Discrimination of ophiolitic from non-ophiolitic ultramafic-mafic allochthons in orogenic belts by the Al/Ti ratio in clinopyroxene.Geology 18, 346-349.
    Luhr, J.F., Carmichael, I.S.E., Varekamp, J.C., 1984. The 1982 eruptions of El Chichón Volcano, Chiapas, Mexico:mineralogy and petrology of the anhydrite-bearing pumices. Journal of Volcanology and Geothermal Research 23, 69-108. https://doi.org/10.1016/0377-0273(84)90057-X.
    Mao, J.W., Pirajno, F., Zhang, Z.H., Chai, F.M., Wu, H., Chen, S.P., Cheng, LS., Yang, J.M.,Zhang, C.Q., 2008. A review of the Cu-Ni sulfide deposits in the Chinese Tianshan and Altay orogens(Xinjiang Autonomous Region, NW China):principal characteristics and ore forming processes. Journal of Asian Earth Sciences32,184-203.
    Masoud, M.S., Madbouly, M.I., Khyamy, A.A., El-Hashah, M.A., Salim, S.M.,Hamouda, E.M., Mohammed, A.S., 1994. Geology of Sheikh Shadli-Hamata District, South Eastern Desert, Egypt. Internal Report. Geological Survey of Egypt.
    Maurice, A.E., Basta, F.F., Khiamy, A A, 2012. Neoproterozoic nascent island arc volcanism from the Nubian Shield of Egypt:magma genesis and generation of continental crust in intra-oceanic arcs. Lithos 132-133.1-20.
    Maurice, A.E., Bakhit, B., Basta, F.F., Khiamy, AA., 2013. Geochemistry of gabbros and granitoids(M-and I-types)from the Nubian Shield of Egypt:roots of Neoproterozoic intra-oceanic island arc.Precambrian Research 224, 397-411.
    Morimoto, N., Fabries, J., Ferguson, A.K., Ginzburg, I.V., Ross, M., Seifert, F.A.,Zussman, J., Aoki, K., Gottardi, G., 1988. Nomenclature of pyroxenes. Mineralogical Magazine 52, 535-550.
    Nachit, H., Ibhi, A., Abia, EA., Ohoud, M.B., 2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Comptes Rendus Geoscience 337.1415-1420. https://doi.org/10.1016/j.crte.2005.09.002.
    Pearce.,J A, Stem, D.W., 2006. Origin of back-arc basin margins:trace element and isotope perspectives. Geophysical Monograph Series 166, 63-86.
    Pearce, J A, Harris, N.B.W., Tindle, A.J., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25,956-983.
    Pettigrew, N., Hattori, K., 2006. The Quetico intrusions of western superior province:neo-Archean examples of Alaskan/ural-type mafic-ultramafic intrusions.Precambrian Research 149, 21-42.
    Pirajno, F., 2004. Hotspots and mantle plumes:global intraplate tectonics, magmatism and ore deposits. Mineralogy and Petrology 82.183-216.
    Plank, T., 2005. Constraints from thorium/lanthanum on sediment recycling at subdution zones and the evolution of the continents. Journal of Petrology 46,921-944.
    Polat, A., Hofmann, A.W., 2003. Alteration and geochemical patterns in the 3.7-3.8Ga Isua greenstone belt, West Greenland. Precambrian Research 126.197-218.
    Prouteau, G., Scaillet, B., Pichavant, M., Maury, R., 2001. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust.Nature 410.197-200.
    Putirka, K., 2008, Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry 69.61-120. https://doi.org/10.2138/rmg2008.69.3.
    Ridolfi, F., Renzulli, A., Puerini, M., 2010. Stability and chemical equilibrium of amphibole in calc-alkaline magmas:an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology 160, 45-66.
    Roeder, P.L. Emslie, R.F., 1970. Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology 29,275-289.
    Seo, J., Oh, C.W., Choi, S.G., Rajesh, V.J., 2013. Two ultramafic rock types in the Hongseong area, South Korea:tectonic significance for northeast Asia. Lithos175-176, 30-39.
    Sharma, M., Wasserburg, G.J., 1996. The neodymium isotopic compositions and rare earth patterns in highly depleted ultramafic rocks. Geochimica et Cosmochimica Acta 60, 4537-4550.
    Shaw, J.E., Baker, J.A., Kent, A.J.R., Ibrahim, K.M., Menzies, MA., 2007. The geochemistry of the Arabian lithospheric mantle-a source of intraplate volcanism? Journal of Petrology 48,1495-1512.
    Stern, R.J., Hedge, C.E., 1985. Geochronologic and isotopic constraints on late precambrian crustal evolution in the Eastern Desert of Egypt. American Journal of Science 285, 97-127.
    Stern, R.J., Kroner, A., 1993. Late Precambrian crustal evolution in NE Sudan:isotopic and geochronologic constraints. The Journal of Geology 101, 555-574.
    Su. B.X., Qjn, K.Z., Zhou, M.F., Sakyi, P.A., Thakurta, J., Tang, D.M., Liu, P.P., Xiao, Q.H.,Sun, H., 2014. Petrological, geochemical and geochronological constraints on the origin of the Xiadong Ural-Alaskan type complex in NW China and tectonic implication for the evolution of southern Central Asian Orogenic Belt. Lithos200-201, 226-240.
    Sun, S.S., McDonough, W.F., 1989. Chemical and systematic of Ocean basalts:implications for mantle composition and processes. In:Saunders, A.D., Norry, M.J.(Eds.), Magmatism in Ocean Basins. Geological Society, London, Special Publication, vol. 42, pp. 313-345.
    Teng, X.M., Yang, Q.Y., Santosh, M., 2015. Devonian magmatism associated with arccontinent collision in the northern North China Craton:evidence from the Longwangmiao ultramafic intrusion in the Damiao area. Journal of Asian Earth Sciences 113, 626-643.
    Tistl, M., 1994. Geochemistry of platinum-group elements of the zoned ultramafic Alto Condoto Complex, Northwest Colombia. Economic Geology 89.158-167.
    Uchida, E., Endo, S., Makino, M., 2007. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology57. 47-56. https://doi.org/10.1111/j.1751-3928.2006.00004.x.
    Wallace, P.J., 2005. Volatiles in subduction zone magmas:concentrations and fluxes based on melt inclusion and volcanic gas data. Journal of Volcanology and Geothermal Research 140, 217-240.
    Wones, D.R., 1989. Significance of the assemblage titanite+magnetite+quartz in granitic rocks. American Mineralogist 74, 744-749.
    Yang, S.H., Zhou, M.F., 2009. Geochemistry of the~430-Ma Jingbulake maficultramafic intrusion in Western Xinjiang, NM China:implications for subduction related magmatism in the South Tianshan orogenic belt. Lithos 113,259-273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700