用户名: 密码: 验证码:
不同类型断层控制油气垂向富集的差异——以渤海湾盆地歧口凹陷歧南斜坡区为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Differences of vertical hydrocarbon enrichment controlled by different types of faults:a case study of Qi'nan slope of Qikou depression,Bohai Bay Basin
  • 作者:褚榕 ; 刘海涛 ; 王海学 ; 姜文亚 ; 付晓飞 ; 王琦 ; 刘世瑞
  • 英文作者:Chu Rong;Liu Haitao;Wang Haixue;Jiang Wenya;Fu Xiaofei;Wang Qi;Liu Shirui;School of Earth Sciences,Northeast Petroleum University;PetroChina Research Institute of Petroleum Exploration and Development;Research Institute of Exploration and Development,PetroChina Dagang Oilfield Company;
  • 关键词:渤海湾盆地 ; 同向断层 ; 反向断层 ; 断层分段生长 ; 断层圈闭 ; 垂向封闭性
  • 英文关键词:Bohai Bay Basin;;synthetic fault;;antithetic fault;;fault segmented growth;;fault trap;;vertical sealing
  • 中文刊名:石油学报
  • 英文刊名:Acta Petrolei Sinica
  • 机构:东北石油大学地球科学学院;中国石油勘探开发研究院;中国石油大港油田公司勘探开发研究院;
  • 出版日期:2019-08-15
  • 出版单位:石油学报
  • 年:2019
  • 期:08
  • 基金:黑龙江省青年科学基金项目(QC2018041);; 中国石油天然气股份有限公司油气勘探重大科技项目(2016D-0702);; 国家自然科学基金联合基金项目(No.U1562214);; “断裂构造变形机制与断圈有效性评价技术”创新团队项目(KYCXTD201803)资助
  • 语种:中文;
  • 页:46-58
  • 页数:13
  • CN:11-2128/TE
  • ISSN:0253-2697
  • 分类号:P618.13
摘要
渤海湾盆地历经多期构造变动,断层圈闭发育普遍。断层作为断层圈闭的边界条件,在油气成藏过程中起着至关重要的作用。以断层圈闭较发育的歧南斜坡区为例分析了同向断层和反向断层控制油气垂向富集的差异,基于三维地震资料,从断层形成过程和断层圈闭分布出发,剖析了断层遮挡圈闭的成因及分布规律。结合油水分布规律,基于油藏解剖并应用储层定量荧光技术明确了不同类型断层控藏的差异及其形成机理。研究表明:①断层分段生长作用和断层上盘与下盘的差异活动是同向断层控制下断层遮挡圈闭形成的主要原因,斜坡区反向断层控制形成的断层圈闭则是断块掀斜翘倾作用所致;②同向断层圈闭发育在断层上盘分段点位置,只有当同向断层进入"硬连接"阶段方可形成断层圈闭,反向断层圈闭形成在断层下盘,在反向断层活动初期便可形成;③同向断层既可以控制油气在多套含油气系统中聚集成藏,也可在一套含油气系统中富集,而反向断层往往控制油气在一套含油气系统中富集;④不同类型断层控制油气垂向聚集的差异与圈闭发育位置以及断-盖配置有关。采用泥岩涂抹系数对沙河街组一段中部盖层控制的含油气系统的垂向调整进行定量评价,泥岩涂抹系数低于3.5时油气保存,泥岩涂抹系数高于3.5时油气垂向渗漏。
        Bohai Bay Basin had undergone multi-period tectonic events,and fault traps were widely developed in this area.As the boundary condition of fault trap,faults played a vital role in hydrocarbon accumulation.Taking the Qi'nan slope with developed fault traps as an example,this paper analyzed the difference between the synthetic fault and antithetic fault in controlling the vertical oil and gas enrichment.Based on the 3 D seismic data,the fault growth process and fault trap distribution,the formation and distribution of the fault-screened traps were also analyzed.Combined with the oil and water distribution,reservoir interpretation as well as quantitative grain fluorescence analysis,the differences in the reservoir controlling and formation mechanisms of different types of faults were clarified.The results showed that:(1)the fault segmented growth and differential activities between the hanging wall and footwall could be the main reasons for the formation of fault-screened traps under the control of synthetic fault,while the fault traps formed by the antithetic fault in the slope area could be the result of fault block tilting and warping;(2)synthetic fault traps could be developed at the segmented growth point of the hanging wall only when the synthetic fault activity was in the"hard-linkage"stage,while the antithetic fault trap could be developed at the footwall when antithetic fault activity was in the early stage;(3)synthetic faults could control the hydrocarbon accumulation in one or multiple petroleum systems,while antithetic faults could often control the hydrocarbon enrichment in one petroleum system;(4)the difference of vertical hydrocarbon accumulation controlled by different types of faults could be related to the position of trap development and the fault-caprock configuration.Shale smear factor was used to quantitatively evaluate the vertical hydrocarbon adjustment in the petroleum system controlled by the middle caprock of Member 1 of Shahejie Formation.The oil and gas was preserved when the shale smear factor was less than3.5 but vertically leaked when the shale smear factor was higher than 3.5.
引文
[1]CLOOS E,PETTIJOHN F J.Southern border of the Triassic Basin,west of York,Pennsylvania:fault or overlap?[J].AAPG Bulletin,1973,84(2):523-536.
    [2]PEACOCK D C P.A comparison between the displacement geometries of veins and normal faults at Kilve,Somerset[J].Proceedings of the Ussher Society,1991,7(4):363-367.
    [3]漆家福,夏义平,杨桥.油区构造解析[M].北京:石油工业出版社,2006.QI Jiafu,XIA Yiping,YANG Qiao.Structural analysis of oil area[M].Beijing:Petroleum Industry Press,2006.
    [4]付晓飞,王勇,渠永红,等.被动裂陷盆地油气分布规律及主控因素分析——以塔木察格盆地塔南坳陷为例[J].地质科学,2011,46(4):1119-1131.FU Xiaofei,WANG Yong,QU Yonghong,et al.The law of oil and gas distribution and mainly controlling factors of the passive rift basin:the Tanan depression of Tamuchage Basin[J].Chinese Journal of Geology,2011,46(4):1119-1131.
    [5]谯汉生,牛嘉玉,王明明.中国东部深部层系反向断层遮挡聚油原理与勘探实践[J].石油勘探与开发,1999,26(6):10-13.JIAO Hansheng,NIU Jiayu,WANG Mingming.The principle and exploration practice of hydrocarbon accumulation sealed by backward faults in deep formations of eastern China[J].Petroleum Exploration and Development,1999,26(6):10-13.
    [6]张永波,高宇慧,马世忠,等.反向正断层在松辽盆地南部油气聚集中的作用[J].西南石油大学学报:自然科学版,2012,34(5):59-64.ZHANG Yongbo,GAO Yuhui,MA Shizhong,et al.Function of oil and gas accumulation and formation mechanism of antithetic normal faults in the south of Songliao Basin[J].Journal of Southwest Petroleum University:Science and Technology Edition,2012,34(5):59-64.
    [7]韦丹宁,付广.反向断裂下盘较顺向断裂上盘更易富集油气机理的定量解释[J].吉林大学学报:地球科学版,2016,46(3):702-710.WEI Danning,FU Guang.Quantitative explanation of mechanism about lower wall of antithetic faults accumulating more oil-gas than upper wall of consequent faults[J].Journal of Jilin University:Earth Science Edition,2016,46(3):702-710.
    [8]赵贤正,蒲秀刚,王家豪,等.断陷盆地缓坡区控砂控藏机制与勘探发现——以歧口凹陷歧北缓坡带为例[J].石油学报,2017,38(7):729-739.ZHAO Xianzheng,PU Xiugang,WANG Jiahao,et al.Sand and reservoir controlling mechanism and exploration discovery in the gentle slope of fault basin:a case study of Qibei slope in Qikou sag[J].Acta Petrolei Sinica,2017,38(7):729-739.
    [9]周立宏,卢异,肖敦清,等.渤海湾盆地歧口凹陷盆地结构构造及演化[J].天然气地球科学,2011,22(3):373-382.ZHOU Lihong,LU Yi,XIAO Dunqing,et al.Basinal texture structure of Qikou sag in Bohai Bay Basin and its evolution[J].Natural Gas Geoscience,2011,22(3):373-382.
    [10]邓运华,薛永安,于水,等.浅层油气运聚理论与渤海大油田群的发现[J].石油学报,2017,38(1):1-8.DENG Yunhua,XUE Yong’an,YU Shui,et al.Shallow hydrocarbon migration and accumulation theory and discovery of giant oilfield group in Bohai Sea[J].Acta Petrolei Sinica,2017,38(1):1-8.
    [11]夏景生,刘晓涵,王政军,等.渤海湾盆地南堡凹陷西部东营组三段—沙河街组一段砂质碎屑流沉积特征及油气勘探意义[J].石油学报,2017,38(4):399-413.XIA Jingsheng,LIU Xiaohan,WANG Zhengjun,et al.Sedimentary characteristics of sandy debris flow in the 3rd Member of Dongying Formation and the 1st Member of Shahejie Formation of the western Nanpu sag,Bohai Bay Basin and its significance in hydrocarbon exploration[J].Acta Petrolei Sinica,2017,38(4):399-413.
    [12]史集建.歧口凹陷盖层及其后期破坏对油气分布的控制作用研究[D].大庆:东北石油大学,2012.SHI Jijian.Control function of caprock and its post-destruction on oil and gas distribution in Qikou sag[D].Daqing:Northeast Petroleum University,2012.
    [13]王海学.海塔盆地中部断陷带转换带形成演化及其控藏机理[D].大庆:东北石油大学,2012.WANG Haixue.The formation,evolution and reservoir-controlling mechanism of relay zone in the Middle rifting zone of Hai Ta Basin[D].Daqing:Northeast Petroleum University,2012.
    [14]FOSSEN H.Extensional tectonics in the North Atlantic Caledonides:a regional view[J].Geological Society,London,Special Publications,2010,335(1):767-793.
    [15]王海学,吕延防,付晓飞,等.断裂质量校正及其在油气勘探开发中的作用[J].中国矿业大学学报,2014,43(3):482-490.WANG Haixue,LYanfang,FU Xiaofei,et al.Fault quality correction and its role in the oil and gas exploration and development[J].Journal of China University of Mining and Technology,2014,43(3):482-490.
    [16]付晓飞,孙兵,王海学,等.断层分段生长定量表征及在油气成藏研究中的应用[J].中国矿业大学学报,2015,44(2):271-281.FU Xiaofei,SUN Bing,WANG Haixue,et al.Fault segmentation growth quantitative characterization and its application on sag hydrocarbon accumulation research[J].Journal of China University of Mining and Technology,2015,44(2):271-281.
    [17]李娟,陈红汉,张光亚,等.Muglad盆地凯康坳陷生长断层活动定量分析及对油气成藏的控制[J].地学前缘,2018,25(2):51-61.LI Juan,CHEN Honghan,ZHANG Guangya,et al.Quantitative study on growth faults activity and its controlling on hydrocarbon accumulation in the Kaikang sag,Muglad Basin[J].Earth Science Frontiers,2018,25(2):51-61.
    [18]JACKSON C A L,ROTEVATN A.3D seismic analysis of the structure and evolution of a salt-influenced normal fault zone:a test of competing fault growth models[J].Journal of Structural Geology,2013,54:215-234.
    [19]刘峻桥,王海学,吕延防,等.源外斜坡区顺向和反向断裂控藏差异性——以渤海湾盆地冀中坳陷文安斜坡中南部为例[J].石油勘探与开发,2018,45(1):82-92.LIU Junqiao,WANG Haixue,LYanfang,et al.Reservoir controlling differences between consequent faults and antithetic faults in slope area outside of source:a case study of the southcentral Wenan slope of Jizhong depression,Bohai Bay Basin,NE China[J].Petroleum Exploration and Development,2018,45(1):82-92.
    [20]郭志强,王海学,赵政权,等.同向和反向断层形成机制及控圈作用差异性[J].大庆石油地质与开发,2017,36(3):1-6.GUO Zhiqiang,WANG Haixue,ZHAO Zhengquan,et al.Forming mechanism of the synthetic and antithetic faults and differences of their controlling action on the traps[J].Petroleum Geology and Oilfield Development in Daqing,2017,36(3):1-6.
    [21]童晓光,牛嘉玉.区域盖层在油气聚集中的作用[J].石油勘探与开发,1989(4):1-8.TONG Xiaoguang,NIU Jiayu.Effects of regional cap formation on oil and gas accumulation[J].Petroleum Exploration and Development,1989(4):1-8.
    [22]贾茹,付晓飞,孟令东,等.断裂及其伴生微构造对不同类型储层的改造机理[J].石油学报,2017,38(3):286-296.JIA Ru,FU Xiaofei,MENG Lingdong,et al.Transformation mechanism of fault and its associated microstructures for different kinds of reservoirs[J].Acta Petrolei Sinica,2017,38(3):286-296.
    [23]付晓飞,贾茹,王海学,等.断层-盖层封闭性定量评价——以塔里木盆地库车坳陷大北—克拉苏构造带为例[J].石油勘探与开发,2015,42(3):300-309.FU Xiaofei,JIA Ru,WANG Haixue,et al.Quantitative evaluation of fault-caprock sealing capacity:a case from Dabei-Kelasu structural belt in Kuqa depression,Tarim Basin,NW China[J].Petroleum Exploration and Development,2015,42(3):300-309.
    [24]吕延防,万军,沙子萱,等.被断裂破坏的盖层封闭能力评价方法及其应用[J].地质科学,2008,43(1):162-174.LYanfang,WAN Jun,SHA Zixuan,et al.Evaluation method for seal ability of cap rock destructed by faulting and its application[J].Chinese Journal of Geology,2008,43(1):162-174.
    [25]吕延防,付广,高大岭,等.油气藏封盖研究[M].北京:石油工业出版社,1996:118-120.LYanfang,FU Guang,GAO Daling,et al.Study on the cap rock of reservoir[M].Beijing:Petroleum Industry Press,1996:118-120.
    [26]赵贤正,蒋有录,金凤鸣,等.富油凹陷洼槽区油气成藏机理与成藏模式——以冀中坳陷饶阳凹陷为例[J].石油学报,2017,38(1):67-76.ZHAO Xianzheng,JIANG Youlu,JIN Fengming,et al.Hydrocarbon accumulation mechanism and model of sub-sags in hydrocarbon-rich sag:a case study of Raoyang sag in Jizhong depression[J].Acta Petrolei Sinica,2017,38(1):67-76.
    [27]LANGHI L,ZHANG Y H,GARTRELL A,et al.Evaluating hydrocarbon trap integrity during fault reactivation using geomechanical three-dimensional modeling:an example from the Timor Sea,Australia[J].AAPG Bulletin,2010,94(4):567-591.
    [28]LIU Keyu,EADINGTON P.A new method for identifying secondary oil migration pathways[J].Journal of Geochemical Exploration,2003,78-79:389-394.
    [29]LIU Keyu,EADINGTON P,MIDDLETON H,et al.Applying quantitative fluorescence techniques to investigate petroleum charge history of sedimentary basins in Australia and Papuan New Guinea[J].Journal of Petroleum Science and Engineering,2007,57(1/2):139-151.
    [30]LU XUESONG,LIU Keyu,ZHUO Qinggong,et al.Palaeo-fluid evidence of the multi-stage hydrocarbon charges in Kela-2 gas field,Kuqa foreland basin,Tarim Basin[J].Petroleum Exploration and Development,2012,39(5):574-582.
    [31]付晓飞,郭雪,朱丽旭,等.泥岩涂抹形成演化与油气运移及封闭[J].中国矿业大学学报,2012,41(1):52-63.FU Xiaofei,GUO Xue,ZHU Lixu,et al.Formation and evolution of clay smear and hydrocarbon migration and sealing[J].Journal of China University of Mining and Technology,2012,41(1):52-63.
    [32]DOUGHTY P T.Clay smear seals and fault sealing potential of an exhumed growth fault,Rio Grande rift,New Mexico[J].AAPG Bulletin,2003,87(3):427-444.
    [33]曾翔,蔡进功,董哲,等.泥页岩沉积特征与生烃能力——以东营凹陷沙河街组三段中亚段-沙河街组四段上亚段为例[J].石油学报,2017,38(1):31-43.ZENG Xiang,CAI Jingong,DONG Zhe,et al.Sedimentary characteristics and hydrocarbon generation potential of mudstone and shale:a case study of middle submember of Member 3 and upper submember of Member 4in Shahejie Formation in Dongying sag[J].Acta Petrolei Sinica,2017,38(1):31-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700