外源氮持续输入对相应氮梯度下碱蓬残体分解及硫养分释放的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of continuous import of exogenous nitrogen on decomposition and sulfur release of Suaeda salsa litters in the corresponding nitrogen gradient
  • 作者:陈冰冰 ; 孙志高 ; 孙文广 ; 胡星云
  • 英文作者:CHEN Bingbing;SUN Zhigao;SUN Wenguang;HU Xingyun;Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Normal University, Ministry of Education;Institute of Geography, Fujian Normal University;Fujian Provincial Key Laboratory for Subtropical Resources and Environment,Fujian Normal University;School of Plant, Environment and Soil Science, Louisiana State University;
  • 关键词:残体分解 ; 氮输入 ; ; 潮滩湿地 ; 黄河口
  • 英文关键词:litter decomposition;;nitrogen enrichment;;sulfur;;tidal marsh;;Yellow River estuary
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:福建师范大学湿润亚热带生态地理过程教育部重点实验室;福建师范大学地理研究所;福建师范大学福建省亚热带资源与环境重点实验室;路易斯安那州立大学植物环境与土壤科学系;
  • 出版日期:2019-01-18 09:26
  • 出版单位:生态学报
  • 年:2019
  • 期:08
  • 基金:国家自然科学基金面上项目(41371104);; 福建省公益类科研院所重点项目(2016R1032-1);; 福建省“闽江学者奖励计划”项目
  • 语种:中文;
  • 页:232-242
  • 页数:11
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:X171
摘要
以黄河口北部滨岸高潮滩的碱蓬残体为研究对象,将第一年度野外原位氮输入试验(N0:无额外氮处理;N1:低氮处理;N2:中氮处理;N3:高氮处理)获得的不同基质质量残体(NL0,NL1,NL2和NL3),原位投放至来源样区,并通过第二年度的持续输氮,探讨外源氮持续输入条件下残体基质质量改变对其分解速率和硫养分释放的影响。结果表明,随着氮输入量的增加,不同基质质量残体的分解速率整体表现为NL1>NL3>NL2>NL0,说明外源氮持续输入条件下基质质量改变促进了残体的分解,且该促进作用在低氮处理下表现的最为明显,原因主要与其在残体分解过程中C/N比的改变程度最为明显有关。不同基质质量残体中的TS含量均呈不同程度波动变化特征,且其与相应的C/S比均呈相反规律变化,说明C/S比是调控不同氮持续输入条件下残体分解过程中硫含量变化的主控因素。不同基质质量残体的硫养分在分解期间均发生不同程度的净释放,且释放强度整体表现为NL3>NL1>NL2>NL0,说明外源氮持续输入条件下残体基质质量改变促进了其硫养分释放,且该促进作用在高氮处理下表现的最为明显。研究发现,未来黄河口氮养分负荷增加的情况下,碱蓬残体的基质质量(C/N和C/S)将发生改变,而持续增强的氮负荷又会促进不同基质质量残体的硫养分归还,从而加速硫的生物循环速率。
        The Suaeda salsa marsh in the high tidal flat of the northern Yellow River estuary was selected as the study object. In the first year, in situ experiment of different nitrogen(N) loadings(N0, no N import treatment; N1, low N import treatment; N2, middle N import treatment; and N3, high N import treatment) was conducted. At the end of the growing season, litters with different substrate qualities(NL0, NL1, NL2, and NL3) were sampled from different N import plots. In the second year, these litters were placed in the corresponding N import plots, and N loadings were continuously conducted as the same with the first year. The objective of this study was to investigate the effect of exogenous nitrogen enrichment on decomposition and sulfur(S) release of S. salsa litters. The results showed that the decomposition rates of S. salsa litters generally followed the order of NL1 > NL3 > NL2 > NL0, indicating that, as N was continuously imported, the alteration of substrate quality promoted litter decomposition and the promotion was particularly obvious in the low N treatment(N1), which was mainly related to alterations in C/N ratios during decomposition. The total sulfur(TS) contents in litters of different N loadings showed different fluctuations, which were opposite to the corresponding C/S ratios, indicating that the C/S ratio was the main factor controlling the variations in TS contents of different litters during decomposition. For litters with different substrate qualities, the net release of S was observed throughout the decomposition process and the release amounts were generally in the order of NL3 > NL1 > NL2 > NL0, indicating that, as N was continuously imported, alterations in litter quality stimulated the release of S and the stimulation was predominant in the high N treatment(N3). This study showed that increasing N loading in the intertidal zone of the Yellow River estuary would alter the substrate quality of S. salsa litters and continuous N loading would promote S returning from the litters. As a result, the S biological cycling rate in S. salsa marsh would be accelerated.
引文
[1] Simas T,Nunes J P,Ferreira J G.Effects of global climate change on coastal salt marshes.Ecological Modelling,2001,139(1):1- 15.
    [2] Mitsch W J,Gosselink J G.Wetlands.New York:John Wiley,2000.
    [3] 陆景陵.植物营养学-上册(第二版).北京:中国农业大学出版社,2003:72- 76.
    [4] Janousek C N,Buffington K J,Guntenspergen G R,Thorne K M,Dugger B D,Takekawa J Y.Inundation,vegetation,and sediment effects on litter decomposition in pacific coast tidal marshes.Ecosystems,2017,20(7):1296- 1310.
    [5] Lopes M L,Martins P,Ricardo F,Rodrigues A M,Quintino V.In situ experimental decomposition studies in estuaries:a comparison of Phragmites australis and Fucus vesiculosus.Estuarine,Coastal and Shelf Science,2011,92(4):573- 580.
    [6] Sun Z G,Mou X J,Sun W L.Potential effects of tidal flat variations on decomposition and nutrient dynamics of Phragmites australis,Suaeda salsa and Suaeda glauca litter in newly created marshes of the Yellow River estuary,China.Ecological Engineering,2016,93:175- 186.
    [7] Li H,Liu Y Z,Li J,Zhou X H,Li B.Dynamics of litter decomposition of dieback Phragmites in Spartina-invaded salt marshes.Ecological Engineering,2016,90:459- 465.
    [8] Sun Z G,Sun W G,Tong C,Zeng C S,Yu X,Mou X J.China′s coastal wetlands:conservation history,implementation efforts,existing issues and strategies for future improvement.Environment International,2015,79:25- 41.
    [9] 遆超普,颜晓元.基于氮排放数据的中国大陆大气氮素湿沉降量估算.农业环境科学学报,2010,29(8):1606- 1611.
    [10] 段雷,郝吉明,谢绍东,周中平.用稳态法确定中国土壤的硫沉降和氮沉降临界负荷.环境科学,2002,23(2):7- 12.
    [11] Aber J,McDowell W,Nadelhoffer K,Magill A,Berntson G,Kamakea M,McNulty S,Currie W,Rustad L,Fernandez I.Nitrogen saturation in temperate forest ecosystems:hypotheses revisited.BioScience,1998,48(11):921- 934.
    [12] 孙志高,牟晓杰,王玲玲,孙万龙,孙文广.黄河口潮滩盐沼沉积强度对碱蓬残体分解及氮动态的影响.湿地科学,2015,13(2):135- 144.
    [13] Zhao Q Q,Bai J H,Liu P P,Gao H F,Wang J L.Decomposition and carbon and nitrogen dynamics of Phragmites australis Litter as affected by flooding periods in coastal wetlands.CLEAN - Soil,Air,Water,2015,43(3):441- 445.
    [14] 蔡晓明.生态系统生态学.北京:科学出版社,2000.
    [15] Hohmann J,Neely R K.Decomposition of Sparganium eurycarpum under controlled pH and nitrogen regimes.Aquatic Botany,1993,46(1):17- 33.
    [16] Rietz D N,Haynes R J.Effects of irrigation-induced salinity and sodicity on soil microbial activity.Soil Biology and Biochemistry,2003,35(6):845- 854.
    [17] Mendelssohn I A,Sorrell B K,Brix H,Schierup H H,Lorenzen B,Maltby E.Controls on soil cellulose decomposition along a salinity gradient in a Phragmites australis wetland in Denmark.Aquatic Botany,1999,64(3/4):381- 398.
    [18] Sun Z G,Mou X J,Sun J K,Song H L,Yu X,Wang L L,Jiang H H,Sun W L,Sun W G.Nitrogen biological cycle characteristics of seepweed (Suaeda salsa) wetland in intertidal zone of Huanghe (Yellow) River Estuary.Chinese Geographical Science,2012,22(1):15- 28.
    [19] Schlesinger W H,Hasey M M.Decomposition of chaparral shrub foliage:losses of organic and inorganic constituents from deciduous and evergreen leaves.Ecology,1981,62(3):762- 774.
    [20] Verhoeven J T A,Toth E.Decomposition of Carex and Sphagnum litter in fens:effect of litter quality and inhibition by living tissue homogenates.Soil Biology and Biochemistry,1995,27(3):271- 275.
    [21] Aerts R,de Caluwe H.Effects of nitrogen supply on canopy structure and leaf nitrogen distribution in Carex Species.Ecology,1994,75(5):1482- 1490.
    [22] Song C C,Liu D Y,Yang G S,Song Y Y,Mao R.Effect of nitrogen addition on decomposition of Calamagrostis angustifolia litters from freshwater marshes of Northeast China.Ecological Engineering,2011,37(10):1578- 1582.
    [23] Vivanco L,Austin A T.Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia,Argentina.Global Change Biology,2011,17(5):1963- 1974.
    [24] Hobbie S E,Vitousek P M.Nutrient limitation of decomposition in Hawaiian forests.Ecology,2000,81(7):1867- 1877.
    [25] Xie Y H,Yu D,Ren B.Effects of nitrogen and phosphorus availability on the decomposition of aquatic plants.Aquatic Botany,2004,80(1):29- 37.
    [26] Blair J M.Nitrogen,sulfur and phosphorus dynamics in decomposing deciduous leaf litter in the Southern Appalachians.Soil Biology and Biochemistry,1988,20(5):693- 701.
    [27] Sun Z G,Mou X J,Song H L,Jiang H H.Sulfur biological cycle of the different Suaeda salsa marshes in the intertidal zone of the Yellow River estuary,China.Ecological Engineering,2013,53:153- 164.
    [28] 李新华,刘景双,杨继松.三江平原小叶章湿地枯落物在不同水位梯度上的分解及硫素释放动态.中国科学院研究生院学报,2007,24(1):59- 65.
    [29] Sun Z G,Mou X J,Liu J S.Effects of flooding regimes on the decomposition and nutrient dynamics of Calamagrostis angustifolia litter in the Sanjiang Plain of China.Environmental Earth Sciences,2012,66(8):2235- 2246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700