Quantum dots enhanced Cerenkov luminescence imaging
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quantum dots enhanced Cerenkov luminescence imaging
  • 作者:Chang-Ran ; Geng ; Yao ; Ai ; Xiao-Bin ; Tang ; Di-Yun ; Shu ; Chun-Hui ; Gong ; Ming-Hua ; Du ; Fa-Quan ; Ji
  • 英文作者:Chang-Ran Geng;Yao Ai;Xiao-Bin Tang;Di-Yun Shu;Chun-Hui Gong;Ming-Hua Du;Fa-Quan Ji;Department of Nuclear Science and Engineering,Nanjing University of Aeronautics and Astronautics;Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions;Affiliated Hospital of Nanjing University of TCM;
  • 英文关键词:Cerenkov luminescence imaging;;Quantum dots;;Optical signal;;Wavelength shift
  • 中文刊名:Nuclear Science and Techniques
  • 英文刊名:核技术(英文版)
  • 机构:Department of Nuclear Science and Engineering,Nanjing University of Aeronautics and Astronautics;Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions;Affiliated Hospital of Nanjing University of TCM;
  • 出版日期:2019-05-15
  • 出版单位:Nuclear Science and Techniques
  • 年:2019
  • 期:05
  • 基金:supported in part by the Natural Science Foundation of Jiangsu Province(No.BK20180415);; the National Natural Science Foundation of China(No.11805100);; the Fundamental Research Funds for the Central Universities(No.NS2018041);; the National Key Research and Development Program(Nos.2016YFE0103600and 2017YFC0107700)
  • 语种:英文;
  • 页:45-49
  • 页数:5
  • CN:31-1559/TL
  • ISSN:1001-8042
  • 分类号:R318
摘要
Cerenkov luminescence imaging(CLI) has been widely investigated for biological imaging. However, the luminescence generated from Cerenkov effect is relatively weak and has poor penetration ability in biological tissues.These limitations consequently hindered the clinical translation of CLI. In this study, we proposed an in vitro experimental study for the demonstration of quantum dots(QDs) configurations affected by the improvement of the signal intensity of CLI. Results revealed that the optimal concentrations were 0.1 mg/mL and 0.25 mg/mL for the studied CdSe/ZnS QDs with fluorescence emission peaks of 580 nm and 660 nm, respectively. The detected optical signal intensity with long-wavelength emission QDs were stronger than those with short-wavelength emission QDs.This study illustrates an experiment to study the effects of concentrations and fluorescence emission peaks of QDs on an enhanced optical signal for the external detection of CLI.
        Cerenkov luminescence imaging(CLI) has been widely investigated for biological imaging. However, the luminescence generated from Cerenkov effect is relatively weak and has poor penetration ability in biological tissues.These limitations consequently hindered the clinical translation of CLI. In this study, we proposed an in vitro experimental study for the demonstration of quantum dots(QDs) configurations affected by the improvement of the signal intensity of CLI. Results revealed that the optimal concentrations were 0.1 mg/mL and 0.25 mg/mL for the studied CdSe/ZnS QDs with fluorescence emission peaks of 580 nm and 660 nm, respectively. The detected optical signal intensity with long-wavelength emission QDs were stronger than those with short-wavelength emission QDs.This study illustrates an experiment to study the effects of concentrations and fluorescence emission peaks of QDs on an enhanced optical signal for the external detection of CLI.
引文
1.A.E.Spinelli,D.D’Ambrosio,L.Calderan et al.,Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers.Phys.Med.Biol.55,483(2009).https://doi.org/10.1088/0031-9155/55/2/010
    2.B.Brichard,A.Fernandez,H.Ooms et al.,Fibre-optic gammaflux monitoring in a fission reactor by means of Cerenkov radiation.Meas.Sci.Technol.18,3257(2007).https://doi.org/10.1088/0957-0233/18/10/S32
    3.J.S.Cho,R.Taschereau,S.Olma et al.,Cerenkov radiation imaging as a method for quantitative measurements of beta particles in a microfluidic chip.Phys.Med.Biol.54,6757(2009).https://doi.org/10.1088/0031-9155/54/22/001
    4.A.K.Glaser,J.M.Andreozzi,S.C.Davis et al.,Video-rate optical dosimetry and dynamic visualization of IMRT and VMATtreatment plans in water using Cherenkov radiation.Med.Phys.(2014).https://doi.org/10.1118/1.4875704
    5.R.Robertson,M.S.Germanos,C.Li et al.,Optical imaging of Cerenkov light generation from positron-emitting radiotracers.Phys.Med.Biol.54,N355(2009).https://doi.org/10.1088/0031-9155/54/16/N01
    6.S.K.Pandey,J.Kaur,B.Easwaramoorthy et al.,Multimodality imaging probe for positron emission tomography and fluorescence imaging studies.Mol.Imaging 13,7290-2014(2014).https://doi.org/10.2310/7290.2014.00005
    7.Y.Zhang,H.Hong,J.W.Engle et al.,Positron emission tomography and optical imaging of tumor CD105 expression with a dual-labeled monoclonal antibody.Mol.Pharm.9,645-653(2012).https://doi.org/10.1021/mp200592m
    8.Z.Hu,X.Ma,X.Qu et al.,Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified Cerenkov luminescence tomography approach.PLoS ONE 7,e37623(2012).https://doi.org/10.1371/journal.pone.0037623
    9.M.Nahrendorf,E.Keliher,B.Marinelli et al.,Hybrid PET-optical imaging using targeted probes.Proc.Natl.Acad.Sci.USA107,7910-7915(2010).https://doi.org/10.1073/pnas.0915163107
    10.C.Gigliotti,L.Altabella,F.Boschi et al.,Monte Carlo feasibility study for image guided surgery:from direct beta minus detection to Cerenkov luminescence imaging.J.Instrum.11,P07021(2016).https://doi.org/10.1088/1748-0221/11/07/P07021
    11.J.S.Klein,G.S.Mitchell,S.R.Cherry,Quantitative assessment of Cerenkov luminescence for radioguided brain tumor resection surgery.Phys.Med.Biol.62,4183(2017).https://doi.org/10.1088/1361-6560/aa6641
    12.C.M.Carpenter,X.Ma,H.Liu et al.,Cerenkov luminescence endoscopy:improved molecular sensitivity with b--emitting radiotracers.J.Nucl.Med.55,1905(2014).https://doi.org/10.2967/jnumed.114.139105
    13.S.-R.Kothapalli,H.Liu,J.C.Liao et al.,Endoscopic imaging of Cerenkov luminescence.Biomed.Opt.Express 3,1215-1225(2012).https://doi.org/10.1364/BOE.3.001215
    14.H.Liu,C.M.Carpenter,H.Jiang et al.,Intraoperative imaging of tumors using Cerenkov luminescence endoscopy:a feasibility experimental study.J.Nucl.Med.53,1579(2012).https://doi.org/10.2967/jnumed.111.098541
    15.R.S.Dothager,R.J.Goiffon,E.Jackson et al.,Cerenkov radiation energy transfer(CRET)imaging:a novel method for optical imaging of PET isotopes in biological systems.PLoS ONE 5,e13300(2010).https://doi.org/10.1371/journal.pone.0013300
    16.J.Li,L.W.Dobrucki,M.Marjanovic et al.,Enhancement and wavelength-shifted emission of Cerenkov luminescence using multifunctional microspheres.Phys.Med.Biol.60,727(2015).https://doi.org/10.1088/0031-9155/60/2/727
    17.O.Volotskova,C.Sun,J.H.Stafford et al.,Efficient radioisotope energy transfer by gold nanoclusters for molecular imaging.Small 11,4002-4008(2015).https://doi.org/10.1002/smll.201500907
    18.C.Zhou,G.Hao,P.Thomas et al.,Near-infrared emitting radioactive gold nanoparticles with molecular pharmacokinetics.Angew.Chem.124,10265-10269(2012).https://doi.org/10.1002/anie.201203031
    19.Y.Bernhard,B.Collin,R.A.Decre′au,Inter/intramolecular Cherenkov radiation energy transfer(CRET)from a fluorophore with a built-in radionuclide.Chem.Commun.50,6711-6713(2014).https://doi.org/10.1039/c4cc01690d
    20.X.Cao,X.Chen,F.Kang et al.,Intensity enhanced Cerenkov luminescence imaging using terbium-doped Gd2O2S microparticles.ACS.Appl.Mater.Interfaces 7,11775-11782(2015).https://doi.org/10.1021/acsami.5b00432
    21.X.Ma,F.Kang,F.Xu et al.,Enhancement of Cerenkov luminescence imaging by dual excitation of Er3?,Yb3?-doped rareearth microparticles.PLoS ONE 8,e77926(2013).https://doi.org/10.1371/journal.pone.0077926
    22.D.L.Thorek,A.Ogirala,B.J.Beattie et al.,Quantitative imaging of disease signatures through radioactive decay signal conversion.Nat.Med.19,1345(2013).https://doi.org/10.1038/nm.3323
    23.F.Boschi,A.E.Spinelli,Quantum dots excitation using pure beta minus radioisotopes emitting Cerenkov radiation.RSC Adv.2,11049-11052(2012).https://doi.org/10.1039/c2ra22101b
    24.X.Michalet,F.Pinaud,L.Bentolila et al.,Quantum dots for live cells,in vivo imaging,and diagnostics.Science 307,538-544(2005).https://doi.org/10.1126/science.1104274
    25.X.Tang,X.Hou,D.Shu et al.,Research on the interaction mechanism between quantum dots and radionuclides for the improvement of Cerenkov luminescence imaging.Sci.China Technol.Sci.58,1712-1716(2015).https://doi.org/10.1007/s11431-015-5897-x
    26.S.Rempel,A.Podkorytova,A.Rempel,Concentration quenching of fluorescence of colloid quantum dots of cadmium sulfide.Phys.Solid State 56,568-571(2014).https://doi.org/10.1134/S1063783414030251
    27.D.M.Willard,L.L.Carillo,J.Jung et al.,CdSe-ZnS quantum dots as resonance energy transfer donors in a model proteinprotein binding assay.Nano Lett.1,469-474(2001).https://doi.org/10.1021/nl015565n
    28.S.L.Jacques,Optical properties of biological tissues:a review.Phys.Med.Biol.58,R37(2013).https://doi.org/10.1088/0031-9155/58/11/R37
    29.K.Kwon,T.Son,K.-J.Lee et al.,Enhancement of light propagation depth in skin:cross-validation of mathematical modeling methods.Lasers Med.Sci.24,605-615(2009).https://doi.org/10.1007/s10103-008-0625-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700