三氯生和三氯卡班对水稻土好氧氮转化及N_2O排放的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Triclosan and Triclocarban on Aerobic N Transformation and N_2O Release in Paddy Soil
  • 作者:陈顺涛 ; 朱同彬 ; 陈建秋 ; 单军 ; 颜晓元
  • 英文作者:CHEN Shuntao;ZHU Tongbin;CHEN Jianqiu;SHAN Jun;YAN Xiaoyuan;The School of Engineering,China Pharmaceutical University;Institute of Soil Science,Chinese Academy of Sciences;Institute of Karst Geology,CAGS,Karst Dynamics Laboratory,MLR and Guangxi;
  • 关键词:三氯生 ; 三氯卡班 ; ~(15)N示踪 ; 数值模型 ; 硝化 ; N_2O
  • 英文关键词:Triclosan;;Triclocarban;;~(15)N-tracing;;Numerical model;;Nitrification;;N_2O
  • 中文刊名:土壤学报
  • 英文刊名:Acta Pedologica Sinica
  • 机构:中国药科大学工学院;中国科学院南京土壤研究所;中国地质科学院岩溶地质研究所/自然资源部广西岩溶动力学重点实验室;
  • 出版日期:2018-12-29 10:38
  • 出版单位:土壤学报
  • 年:2019
  • 期:04
  • 基金:中国科学院南京土壤研究所“一三五”计划和领域前沿项目(ISSASIP1653);; 国家自然科学基金项目(41571289,21876207)共同资助~~
  • 语种:中文;
  • 页:113-122
  • 页数:10
  • CN:32-1119/P
  • ISSN:0564-3929
  • 分类号:X53
摘要
三氯生(Triclosan, TCS)和三氯卡班(Triclocarban, TCC)是典型的药品与个人护理用品,在土壤生态系统中被广泛检出,且存在增加土壤微生物抗药性及抑制土壤呼吸的潜在风险,但目前有关TCS和TCC对土壤氮转化过程及氧化亚氮(N_2O)排放的影响尚不清楚。基于此,采用室内培养实验和15N稀释-富集法,结合氮转化数值模型,研究了不同浓度梯度下TCS(2和5mg·kg~(-1))和TCC(1和2 mg·kg~(-1))的单独及联合存在对水稻土氮初级转化速率以及N_2O排放的影响。结果表明,1mg·kg~(-1)TCC及5mg·kg~(-1)TCS+2mg·kg~(-1)TCC处理对水稻土氮素的矿化-同化无显著影响,其余TCS和TCC处理均显著促进了氮的矿化-同化循环。此外,TCS和TCC处理显著降低了自养硝化速率、硝态氮的微生物固定速率以及硝酸盐异化还原成铵(Dissimilatory nitrate reduction to ammonium, DNRA)速率(2 mg·kg~(-1)TCS处理及5mg·kg~(-1)TCS+2mg·kg~(-1)TCC对DNRA速率无显著影响)。值得关注的是,TCS和TCC单一和联合处理均显著增加了N_2O的累积排放量,其累积排放量为对照的1.13倍~1.44倍。本研究表明,TCS和TCC改变了水稻土好氧氮转化过程,可能对稻田生态系统氮循环产生不利影响;TCC和TCS对水稻土N_2O排放的促进作用也增加了稻田生态系统对温室效应和臭氧层破坏的潜在贡献,因此,未来评价TCS和TCC土壤生态风险时,应考虑其对氮转化过程和N_2O排放的潜在影响。
        【Objective】Triclosan(TCS) and triclocarban(TCC), are typical pharmaceutical and personal care products(PPCPs) that are extensively detected in soil, posing potential risks of raising soil microbes' drug resistances and inhibiting soil respirations. However, so far little is known about their influences on soil gross N transformation processes and N_2O emissions in soil. 【Method】 In view of this,an indoor incubation experiment was carried out using the 15 N diluting-enriching method coupled with a N transformation numerical model to investigate influences of TCS and TCC, applied alone or in combination,at varying rates on preliminary N transformation rate and N_2O release rate in paddy soil. 【Result】Results show that the treatment of applying 1 mg·kg~(-1) TCC or 5 mg·kg~(-1) TCS+2 mg·kg~(-1) TCC did not have much influence on N mineralization-assimilation in the paddy soil, but all the other treatments did quite reversely(P<0.05). Besides, all the TCC and TCS treatments significantly inhibited autotrophic nitrification,microbial immobilization of nitrate and dissimilatory nitrate reduction to ammonium(Dissimilatory nitrate reduction to ammonium, DNRA), except for the treatment of applying 2 mg·kg~(-1) TCS or 5 mg·kg~(-1) TCS+2 mg·kg~(-1) TCC. It is noteworthy that all the treatments(P<0.05) increased cumulative emission of N_2O significantly or by 1.13~1.44 folds as compared with the control. 【Conclusion】All the findings in this study suggest that TCS and TCC alter aerobic N transformation processes, which may bring about adverse effects on N recycling in the paddy field ecosystem, and promote N_2O emission, which may enhance the potential contribution of the paddy field ecosystem to greenhouse effect and damage of the ozone layer.Therefore, in evaluating soil ecological risks of TCS and TCC in future, it is essential to take into account their potential influences on N transformation and N_2O emission.
引文
[1] Ying G G,Yu X Y,Kookana R S.Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling.Environmental Pollution,2007,150(3):300-305
    [2]Heidler J,Sapkota A,Halden R U.Partitioning,persistence,and accumulation in digested sludge of the topical antiseptic triclocarban during wastewater treatment.Environmental Science and Technology,2006,40(11):3634-3639
    [3]Cha J,Cupples A M.Triclocarban and triclosan biodegradation at field concentrations and the resulting leaching potentials in three agricultural soils.Chemosphere,2010,81(4):494—499
    [4]Chu S G,Metcalfe C D.Simultaneous determination of triclocarban and triclosan in municipal biosolids by liquid chromatography tandem mass spectrometry.Journal of Chromatography A,2007,1164(1/2):212-218
    [5]Lenz K A,Pattison C,Ma H.Triclosan(TCS)and triclocarban(TCC)induce systemic toxic effects in a model organism the nematode Caenorhabditis elegans.Environmental Pollution,2017,23 1(Part 1):462-470
    [6]Coogan M A,Edziyie R E,La Point T W,et al.Algal bioaccumulation of triclocarban,triclosan,and methyl-triclosan in a North Texas wastewater,treatment plant receiving stream.Chemosphere,2007,67(10):1911-1918
    [7]Coogan M A,La Point T W.Snail bioaccumulationof triclocarban,triclosan,and methyltriclosan in a North Texas,USA,stream affected by wastewater treatment plant runoff.Environmental Toxicology and Chemistry,2008,27(8):1788—1793
    [8]Gielen G J H P,Schaik A P V,Northcott G,et al.Effect of copper and zinc on microbial tolerance to triclosan in two soil types.Journal of Soils and Sediments,2016,16(7):1944—1959
    [9]王凤花,张振国,贾文,等·三氯生与镉单一及复合污染对土壤呼吸和酶活性的影响.土壤学报,2018,55(2):422-431Wang F H,Zhang Z G,Jia W,et al.Effects of single-factor and combined contamination of triclosan and cadmium on respiration and enzyme activity of soil(In Chinese).Acta Pedologica Sinica,2018,55(2):422-43 1
    [10]Waller N J,Kookana R S.Effect of trilcosan on microbial activity in Australian soils.Environmental Toxicology and Chemistry,2009,28(1):65—70
    [11]Galloway J N,Dentener F J,Capone D G,et al.Nitrogen cycles:Past,present,and future.Biogeochemistry,2004,70(2):153—226
    [12]Ishii S,Ikeda S,Minamisawa K,et al.Nitrogen cycling in rice paddy environments:past achievements and future challenges.Microbes and Environments,2011,26(4):282-292
    [13]Muller C,Rutting T,Kattge J,et al.Estimation of parameters in complex 15N tracing models by Monte Carlo sampling.Soil Biology and Biochemistry,2007,39(3):715-726
    [14]Lan T,Han Y,Cai Z C.Comparison of gross N transformation rates in two paddy soils under aerobic condition.Pedosphere,2017,27(1):112—120
    [15]Zhu T B,Dang Q,Zhang J B,et al.Reductive soil disinfestation(RSD)alters gross N transformation rates and reduces NO and N2O emissions in degraded vegetable soils.Plant and Soil,2014,382(1/2):269-280
    [16]Chalew T E,Halden R U.Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban.Journal of the American Water Resources Association,2010,45(1):4—13
    [17]Butler E,Whelan M J,Sakrabani R,et al.Fate of triclosan in field soils receiving sewage sludge.Environmental Pollution,2012,167(6):101—109
    [18]Schimel J P,Bennett J.Nitrogen mineralization:Challenges of a changing paradigm.Ecology,2004,85(3):591-602.
    [19] Paungfoo-Lonhienne C,Visser J,Lonhienne T G A,et al.Past,present and future of organic nutrients.Plant and Soil,2012,359(1/2):1-18
    [20]Murphy D V,Recous S,Stockdale E A,et al.Gross nitrogen fluxes in soil:Theory,measurement and application of N-15 pool dilution techniques.Advances in Agronomy,2003,79(6):69—118
    [21] Badalucco L,Pomare F,Grego S,et al.Activity and degradation of streptomycin and cycloheximide in soil.Biology and Fertility of Soils,1994,18(4):334-340
    [22]Ingham E R,Coleman D C.Effects of streptomycin,cycloheximide,fungizone,captan,carbofuran,cygon,and PCNB on soil microorganisms.Microbial Ecology,1984,10(4):345-358
    [23]Zhang J B,Cai Z C,Zhu T B.N2O production pathways in the subtropical acid forest soils in China.Environmental Research,2011,111(5):643—649
    [24]Stange C F,Spott O,Arriaga H,et al.Use of the inverse abundance approach to identify the sources of NO and N2O release from Spanish forest soils under oxic and hypoxic conditions.Soil Biology and Biochemistry,2013,57(3):451—458
    [25] Kowalchuk G A,Stephen J R.Ammonia-oxidizing bacteria:A model for molecular microbial ecology.Annual Review of Microbiology,2001,55(1):485-529
    [26]Booth M S,Stark J M,Rastetter E.Controls on nitrogen cycling in terrestrial ecosystems:A synthetic analysis of literature data.Ecological Monographs,2005,75(2):139-157
    [27]Low A P,Stark J M,Dudley L M.Effects of soil osmotic potential on nitrification,ammonification,N-assimilation,and nitrous oxide production.Soil Science,1997,162(1):16-27
    [28] Butterbach-Bahl K,Baggs E M,Dannenmann M,et al.Nitrous oxide emissions from soils:How well do we understand the processes and their controls?Philosophical Transactions of the Royal Society B-Biological Sciences,20 13,368(1621):20130122
    [29]周晓丽,王琳,张艺磊,等·硝态氮源及碳源有效性对土壤N2O和CO2排放的影响.农业资源与环境学报,2016,33(2):170-175Zhou X L,Wang L,Zhang Y L,et al.Effect of the availability of nitrate nitrogen and carbon source on N2O and CO2 emission from soil(In Chinese).Journal of Agricultural Resources and Environment.2016,33(2):170-175
    [30]Bengtsson G,Bergwall C.Fate of 15N labelled nitrate and ammonium in a fertilized forest soil.Soil Biology&Biochemistry,2000,32(4):545—557
    [31]Roberts K L,Eate V M,Eyre B D,et al.Hypoxic events stimulate nitrogen recycling in a shallow saltwedge estuary:The Yarra River estuary,Australia.Limnology and Oceanography,2012,5 7(5):1427-1442
    [32]Silver W L,Thompson A W,Reich A,et al. Nitrogen cycling in tropical plantation forests:Potential controls on nitrogen retention.Ecological Applications,2005,15(5):1604—1614
    [33]Rutting T,Huygens D,Muller C,et al.Functional role of DNRA and nitrite reduction in a pristine south Chilean Nothofagus forest.Biogeochemistry,2008,90(3):243-258
    [34]Semedo M,Song B,Sparrer T,et al.Antibiotic effects on microbial communities responsible for denitrification and N2O production in grassland soils.Frontiers in Microbiology,2018(9):Article 2121

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700