疏花水柏枝幼苗生物量与构件对模拟土壤地下水位变化的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Responses of biomass and components of Myricaria laxiflora seedlings to simulated soil water level changes
  • 作者:官守鹏 ; 陈芳清 ; 吕坤 ; 周菊梅 ; 夏萍娟
  • 英文作者:Guan Shou-Peng;Chen Fang-Qing;Lü Kun;Zhou Ju-Mei;Xia Ping-Juan;Hubei International Scientific and Technological Cooperation Center of Ecological Conservation and Management in Three Gorges Area;Environmental Protection Center of Administration Bureau for Three Gorges Cascade Construction & Operation,CTG;
  • 关键词:疏花水柏枝 ; 幼苗生长 ; 地下水位 ; 种群更新 ; 物种保护
  • 英文关键词:Myricaria laxiflora;;Seedling growth;;Soil water level;;Population regeneration;;Species conservation
  • 中文刊名:植物科学学报
  • 英文刊名:Plant Science Journal
  • 机构:湖北省三峡地区生态保护与治理国际联合研究中心;中国长江三峡集团有限公司流域枢纽运行管理局环境保护中心;
  • 出版日期:2019-08-14
  • 出版单位:植物科学学报
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金项目(31770564)~~
  • 语种:中文;
  • 页:77-86
  • 页数:10
  • CN:42-1817/Q
  • ISSN:2095-0837
  • 分类号:Q948
摘要
通过模拟不同地下水位的方法,对疏花水柏枝(Myricaria laxiflora (Franch.) P. Y. Zhang et Y. J.Zhang)一年生幼苗在不同条件下地上与地下部生物量及构件的变化进行测定,分析幼苗生长对地下水位变化的响应。结果显示:随着地下水位的降低,疏花水柏枝幼苗的生长特征指标均呈先增加后减少的趋势,其中地上、地下部分生物量的最高值分别为0.0438、0.0100 g,最低值分别为0.0177、0.0026 g。幼苗地上部生物量在-10 cm处理水平最高;地下部生物量在-15 cm处理水平最高。幼苗直径、根表面积、株高、主根长度、根体积、一级枝数、二级枝数等指标也分别在-10 cm或-15 cm处理水平达到最高值。疏花水柏枝幼苗主要构件的生长与地下水位的变化存在显著相关性。主成分分析结果表明,幼苗的地下部分更容易受到土壤地下水位变化的影响,幼苗性状症候群随地下水位的变化而发生移动,说明该物种幼苗在不同地下水位时的生长投资策略具有较大差异。
        We studied changes in biomass and components of one-year-old Myricaria laxiflora seedlings under different simulated soil water levels to reveal the response of seedling growth to these changing conditions. Results showed that the growth characteristics( aboveground and underground biomass,plant height,and length of main root) of one-year-old seedlings increased at first and then decreased with decreased soil water level. The highest aboveground and underground biomass values reached 0.0438 g and 0.0100 g,respectively,and the lowest values were 0.0177 g and 0.0026 g,respectively. The highest aboveground biomass was observed in the-10 cm treatment,whereas the highest underground biomass was observed in the-15 cm treatment. The seedling component indicators,including seedling diameter, root surface area, plant height, root volume, primary branch number, and secondary branch number,also reached their highest values in the-10 cm or-15 cm treatments. There was a significant correlation between the growth of the main components of the seedlings and the change in soil water level. Principal component analysis indicated that the underground part of the seedlings was susceptible to changes in soil water level,and that the trait syndromes of seedling growth changed with changing soil water level. This suggests that the investment strategies of seedling growth differed among the different soil water levels.
引文
[1]Hammond DS,Brown VK.Seed size of woody plants in relation to disturbance,dispersal,soil type in wet neotropical forests[J].Ecology,1995,76(8):2544-2561.
    [2]Grzyl A,Marcin K,Katarzyna M,Zielińska,Rewicz A.The relationship between climatic conditions and generative reproduction of a lowland population of Pulsatilla vernalis:the last breath of a relict plant or a fluctuating cycle of regeneration?[J].Plant Ecol,2014,215(4):457-466.
    [3]Stella JC,Battles JJ.How do riparian woody seedlings survive seasonal drought?[J].Oecologia,2010,164(3):579-590.
    [4]González E,González-Sanchis M,Comín FA,Muller E.Hydrologic thresholds for riparian forest conservation in a regulated large Mediterranean river[J].River Res Appl,2012,28(1):71-80.
    [5]陈芳清,谢宗强,熊高明,刘彦明,杨会英.三峡濒危植物疏花水柏枝的回归引种和种群重建[J].生态学报,2004,25(7):1811-1817.Chen FQ,Xie ZQ,Xiong GM,Liu YM,Yang HY.Reintroduction and population reconstruction of an endangered plant Myricaria laxiflorain the Three Gorges Reservoir area,China[J].Acta Ecologica Sinica,2004,25(7):1811-1817.
    [6]Nilsson C,Brown RL,Jansson R,Merritt DM.The role of hydrochory in structuring riparian and wetland vegetation[J].Biol Rev,2010,85(4):837-858.
    [7]Campbell D,Keddy PA,Broussard M,Mcfalls-Smith TB.Small changes in flooding have large consequences:experimental data from ten wetland plants[J].Wetlands,2016,36(3):457-466.
    [8]Vivian LM,Godfree RC,Colloff MJ,Mayence CE,Marshall DJ.Wetland plant growth under contrasting water regimes associated with river regulation and drought:implications for environmental water management[J].Plant Ecol,2014,215(9):997-1011.
    [9]段唯鑫,郭生练,王俊.长江上游大型水库群对宜昌站水文情势影响分析[J].长江流域资源与环境,2016,25(1):120-130.Duan WX,Guo SL,Wang J.Impact of upper Yangtze River large-scale cascade reservoirs on flow regime at Yichang station[J].Resources and Environment in the Yangtze Basin,2016,25(1):120-130.
    [10]Vale VS,Schiavini I,Araújo GM,Gusson AE,Lopes SF,Oliveira AP.Effects of reduced water flow in a riparian forest community:a conservation approach[J].J Trop For Sci,2015,27(1):13-24.
    [11]王勇,吴金清,陶勇,李作洲,黄宏文.三峡库区消涨带特有植物疏花水柏枝(Myricaria laxiflora)的自然分布及迁地保护研究[J].植物科学学报,2003,21(5):415-422.Wang Y,Wu JQ,Tao Y,Li ZZ,Huang HW.Natural distribution and ex situ conservation of endemic species Myricaria laxiflora in water-level-fluctuation zone within ThreeGorges Reservoir Area of Changjiang River[J].Journal of Wuhan Botanical Research,2003,21(5):415-422.
    [12]陈芳清,王传华.三峡珍稀濒危植物疏花水柏枝的生态保护[M].北京:科学出版社,2015.
    [13]孙昭华,李义天,李明,葛华.长江中游宜昌-沙市段河床冲淤与枯水位变化[J].水利水运工程学报,2007(4):14-20.Sun ZH,Li YT,Li M,Ge H.Effect of channel degradation on lower level in Yichang-Shashi reach in the Yangtze River[J].Hydro-Science and Engineering,2007(4):14-20.
    [14]鲍大川,卢志军,江明喜,徐绍东,姚清,等.三峡大坝下游残存疏花水柏枝种群结构和动态[J].植物科学学报,2010,28(6):711-717.Bao DC,Lu ZJ,Jiang MX,Xu SD,Yao Q,et al.Population structure and dynamics of remanent Myricaria laxiflora downstream from the Three Gorges Dam[J].Plant Science Journal,2010,28(6):711-717.
    [15]邓磊,关晋宏,张文辉.辽东栎幼苗根系形态特征对环境梯度的响应[J].生态学报,2018,38(16):5739-5749.Deng L,Guan JH,Zhang WH.Respones of root morphological characteristics of Quercus liaotungensis seedings to environmental gradients[J].Act Ecological Sinica,2018,38(16):5739-5749.
    [16]Heerdt GNJT,Veen GFC,Putten WHVD,Bakker J.Effects of temperature,moisture and soil type on seedling emergence and mortality of riparian plant species[J].Aquat Bot,2016,136:82-94.
    [17]管博,于君宝,陆兆华,张莹,王雪宏.黄河三角洲滨海湿地水盐胁迫对盐地碱蓬幼苗生长和抗氧化酶活性的影响[J].环境科学,2011,32(8):2422-2429.Guan B,Yu JB,Lu ZH,Zhang Y,Wang XH.Effects of water-salt stresses on seedling growth and activities of antioxidative enzyme of Suaeda salsa in coastal wetlands of the Yellow River Delta[J].Environmental Science,2011,32(8):2422-2429.
    [18]Hanke JM,Ludewig K,Jensen K.Effects of water level and competition on the endangered river corridor plant Cnidium dubium in the context of climate change[J].Wetl Ecol Manag,2015,23(2):215-226.
    [19]Bartholomeus RP,Witte JPM,Bodegom PMV,von Dam JC,Becker PD,Aerts R.Process-based proxy of oxygen stress surpasses indirect ones in predicting vegetation characteristics[J].Ecohydrology,2012,5:746-758.
    [20]Bartholomeus RP,Witte JPM,Bodegom PMV,von Dam JC,Aerts R.Critical soil conditions for oxygen stress to plant roots:substi process-based model[J].J Hydrol,2008,360(1):147-165.
    [21]Tsukahara H,Kozlowski TT.Effect of flooding and temperature regime on growth and stomatal resistance of Betula platyphylla var.japonica seedlings[J].Plant Soil,1986,92(1):103-112.
    [22]Loreti E,Van VH,Perata P.Plant responses to flooding stress[J].Curr Opin Plant Biol,2016,33:64-71.
    [23]Corley RHV,Tinker PB.Growth,flowering and yield[M].Corley RHV,Tinker PB,eds.The Oil Palm.5th ed.Oxford:Wiley Blackwell,2015.
    [24]Imada S,Yamanaka N,Tamai S.Water table depth affects Populus alba fine root growth and whole plant biomass[J].Funct Ecol,2010,22(6):1018-1026.
    [25]杨振亚,周本智,陈庆标,葛晓改,王小明,等.干旱对杉木幼苗根系构型及非结构性碳水化合物的影响[J].生态学报,2018,38(18):6729-6740.Yang ZY,Zhou BZ,Chen QB,Ge XG,Wang XM,et al.Effects of drought on root architecture and non-structural carbohydrate of Cunninghamia lanceolata[J].Acta Ecologica Sinica,2018,38(18):6729-6740.
    [26]王竞红,张秀梅,陈艾,周蕴薇,陈鹏,江远芳.紫穗槐幼苗根系生理特性和解剖结构对PEG-6000模拟干旱的响应[J].生态学报,2018,38(2):511-517.Wang JH,Zhang XM,Chen A,Zhou YW,Chen P,Jiang YF.Response of physiological characteristics and anatomical structure of roots in Amorpha fruticosa seedlings exposed to simulated drought with PEG-6000[J].Acta Ecologica Sinica,2018,38(2):511-517.
    [27]Stave J,Oba G,Eriksen AB,Nordal I,Stenseth NC.Seedling growth of Acacia tortilis and Faidherbia albida in response to simulated groundwater tables[J].Forest Ecol Manage,2005,212(1):367-375.
    [28]Wang D,Yu Z,Peng G,Zhao C,Ding J,Zhang X.Water use strategies of,Populus euphratica,seedlings under groundwater fluctuation in the Tarim river basin of central asia[J].Catena,2018,166:89-97.
    [29]Brown CE.A study on waterlogging as a potential tool to control Ligustrum sinense populations in western tennessee[J].Wetlands,2015,20:429-437.
    [30]田媛,李彦,唐立松,范连连.梭梭幼苗的存活与地上地下生长的关系[J].生态学报,2014,34(8):2012-2019.Tian Y,Li Y,Tang LS,Fang LL.The survival and above/below ground growth of Haloxylon ammodendron seedling[J].Acta Ecologica Sinica,2014,34(8):2012-2019.
    [31]耿梦娅,陈芳清,吕坤,王玉兵,向琳,谢伶莉.濒危植物长柄双花木(Disanthus cercidifolius var.longipes)叶功能性状随生长发育阶段的变化[J].植物科学学报,2018,36(6):851-858.Geng MY,Chen FQ,LüK,Wang YB,Xiang L,Xie LL.Effects of developmental stage on the leaf functional traits of the endangered shrub species Disanthus cercidifolius var.longipes H.T.Chang[J].Plant Science Journal,2018,36(6):851-858.
    [32]邬荣领,胡建军,韩一凡,刘红霞.表型可塑性对木本植物树冠结构与发育的影响[J].林业科学,2002,38(4):141-156.Wu RL,Hu JJ,Han YF,Liu HX.How phenotypic plasticity affects crown architecture and development in woody plants[J].Scientia Silvae Sinicae,2002,38(4):141-156.
    [33]Florian F,Pablo C,Olivier C,Antoine D,Manuel L,et al.Root functional trait syndromes and plasticity drive the ability of grassland fabaceae to tolerate water and phosphorus shortage[J].Environ Exp Bot,2015,110:62-72.
    [34]Bontemps A,Davi H,Lefèvre F,Rozenberg P,Oddoumuratorio S.Data from:how do functional traits syndromes covary with growth and reproductive performance in a water-stressed population of Fagus sylvatica?[J].Oikos,2017,126(10):1472-1483.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700