稀土掺杂近红外二区发光纳米探针及其生物应用(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Lanthanide-doped near-infrared Ⅱ luminescent nanoprobes for bioapplications
  • 作者:余少桦 ; 涂大涛 ; 廉纬 ; 徐金 ; 陈学元
  • 英文作者:Shaohua Yu;Datao Tu;Wei Lian;Jin Xu;Xueyuan Chen;CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences;University of Chinese Academy of Sciences;College of Chemistry, Fuzhou University;
  • 英文关键词:lanthanide ions;;nanoprobe;;near-infrared Ⅱ luminescence;;bioimaging;;bioassay;;temperature sensing
  • 中文刊名:Science China Materials
  • 英文刊名:中国科学:材料科学(英文版)
  • 机构:CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences;University of Chinese Academy of Sciences;College of Chemistry, Fuzhou University;
  • 出版日期:2019-04-18 16:53
  • 出版单位:Science China Materials
  • 年:2019
  • 期:08
  • 基金:supported by the Strategic Priority Research Program of the CAS(XDB20000000);; the National Natural Science Foundation of China(21771185,11704380,51672272,21804134and U1805252);; the CAS/SAFEA International Partnership Program for Creative Research Teams;; the Natural Science Foundation of Fujian Province(2017I0018)
  • 语种:英文;
  • 页:7-22
  • 页数:16
  • CN:10-1236/TB
  • ISSN:2095-8226
  • 分类号:O657.3
摘要
近红外二区(1000–1700 nm)荧光纳米探针可以显著降低穿透组织时的光散射和自荧光效应的影响,从而提高探测深度以及成像分辨率.目前已报道的近红外二区生物探针主要基于有机荧光团、碳纳米管、量子点以及共轭聚合物.稀土离子掺杂纳米晶因其优异的发光性质,被认为是一类极具发展潜力的生物探针.本文从设计高效近红外二区发光的稀土掺杂纳米材料的角度出发,主要介绍了此类稀土纳米探针的基质选择、阳离子掺杂和表面修饰等设计策略的研究进展,及其在无背景生物成像、高灵敏生物检测和温度探测等领域的最新应用.此外,还展望了此类荧光纳米探针面临的挑战以及未来发展趋势.
        Luminescent biosensing in the second nearinfrared(NIR-II) region is featured with superior spatial resolution and high penetration depth by virtue of the suppressed scattering of long-wavelength photons. Hitherto, the reported NIR-II nanoprobes are mostly based on carbon nanotubes, organic fluorophores or semiconducting quantum dots. As an alternative, trivalent lanthanide ions(Ln3+) doped nanoparticles have been emerging as a novel class of promising nanoprobes. In this review, we highlight the recent progress in the design of highly efficient Ln3+-doped NIR-II nanoparticles towards their emerging bioapplications, with an emphasis on autofluorescence-free bioimaging, sensitive bioassay, and accurate temperature sensing. Moreover, some efforts and challenges towards this rapidly expanding field are envisioned.
引文
1 Ferrari M.Cancer nanotechnology:opportunities and challenges.Nat Rev Cancer,2005,5:161-171
    2 Sivaraman D,Biswas P,Cella LN,et al.Detecting RNA viruses in living mammalian cells by fluorescence microscopy.Trends Biotech,2011,29:307-313
    3 Cai W.Applications of gold nanoparticles in cancer nanotechnology.Nanotechnol Sci Appl,2008,Volume 1:17-32
    4 Wang L,Dong H,Li Y,et al.Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer.Adv Mater,2015,27:2065-2069
    5 Zhou JC,Yang ZL,Dong W,et al.Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals.Biomaterials,2011,32:9059-9067
    6 Hemmer E,Acosta-Mora P,Méndez-Ramos J,et al.Optical nanoprobes for biomedical applications:shining a light on upconverting and near-infrared emitting nanoparticles for imaging,thermal sensing,and photodynamic therapy.J Mater Chem B,2017,5:4365-4392
    7 Wei J,Zheng W,Shang X,et al.Mn2+-activated calcium fluoride nanoprobes for time-resolved photoluminescence biosensing.Sci China Mater,2019,62:130-137
    8 Jiang X,Cao C,Feng W,et al.Nd3+-doped LiYF4nanocrystals for bio-imaging in the second near-infrared window.J Mater Chem B,2016,4:87-95
    9 Zhou X,Cheng J,Li L,et al.A europium(III)metal-organic framework as ratiometric turn-on luminescent sensor for Al3+ions.Sci China Mater,2018,61:752-757
    10 Wang D,Wang R,Liu L,et al.Down-shifting luminescence of water soluble NaYF4:Eu3+@Ag core-shell nanocrystals for fluorescence turn-on detection of glucose.Sci China Mater,2017,60:68-74
    11 Liu TM,Conde J,Lipiński T,et al.Revisiting the classification of NIR-absorbing/emitting nanomaterials for in vivo bioapplications.NPG Asia Mater,2016,8:e295
    12 Frangioni J.In vivo near-infrared fluorescence imaging.Curr Opin Chem Biol,2003,7:626-634
    13 Xu CT,Svensson N,Axelsson J,et al.Autofluorescence insensitive imaging using upconverting nanocrystals in scattering media.Appl Phys Lett,2008,93:171103
    14 Bashkatov AN,Genina EA,Kochubey VI,et al.Optical properties of human skin,subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm.J Phys D-Appl Phys,2005,38:2543-2555
    15 Diao S,Hong G,Antaris AL,et al.Biological imaging without autofluorescence in the second near-infrared region.Nano Res,2015,8:3027-3034
    16 Bashkatov AN,Genina EA,Tuchin VV.Optical properties of skin,subcutaneous,and muscle tissues:a review.J Innov Opt Health Sci,2011,04:9-38
    17 Zhang H,Salo D,Kim DM,et al.Penetration depth of photons in biological tissues from hyperspectral imaging in shortwave infrared in transmission and reflection geometries.J Biomed Opt,2016,21:126006
    18 Quek CH,Leong KW.Near-infrared fluorescent nanoprobes for in vivo optical imaging.Nanomaterials,2012,2:92-112
    19 Hong G,Lee JC,Robinson JT,et al.Multifunctional in vivo vascular imaging using near-infrared II fluorescence.Nat Med,2012,18:1841-1846
    20 Hong G,Diao S,Chang J,et al.Through-skull fluorescence imaging of the brain in a new near-infrared window.Nat Photonics,2014,8:723-730
    21 Bruns OT,Bischof TS,Harris DK,et al.Next-generation in vivo optical imaging with short-wave infrared quantum dots.Nat Biomed Eng,2017,1:0056
    22 Sevick-Muraca EM.Translation of near-infrared fluorescence imaging technologies:emerging clinical applications.Annu Rev Med,2012,63:217-231
    23 Diao S,Blackburn JL,Hong G,et al.Fluorescence imaging in vivo at wavelengths beyond 1500 nm.Angew Chem Int Ed,2015,54:14758-14762
    24 Vahrmeijer AL,Hutteman M,van der Vorst JR,et al.Imageguided cancer surgery using near-infrared fluorescence.Nat Rev Clin Oncol,2013,10:507-518
    25 Bhaumik S,DePuy J,Klimash J.Strategies to minimize background autofluorescence in live mice during noninvasive fluorescence optical imaging.Lab Anim,2007,36:40-43
    26 Inoue Y,Izawa K,Kiryu S,et al.Diet and abdominal autofluorescence detected by in vivo fluorescence imaging of living mice.Mol Imag,2008,7:7290.2008.0003
    27 Troy T,Jekic-McMullen D,Sambucetti L,et al.Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models.Mol Imag,2004,3:9-23
    28 Villa I,Vedda A,Cantarelli IX,et al.1.3μm emitting SrF2:Nd3+nanoparticles for high contrast in vivo imaging in the second biological window.Nano Res,2014,8:649-665
    29 Li C,Wang Q.Challenges and opportunities for intravital nearinfrared fluorescence imaging technology in the second transparency window.ACS Nano,2018,12:9654-9659
    30 Fan Y,Zhang F.A new generation of NIR-II probes:lanthanidebased nanocrystals for bioimaging and biosensing.Adv Opt Mater,2019,1:1801417
    31 Xu J,Gulzar A,Yang P,et al.Recent advances in near-infrared emitting lanthanide-doped nanoconstructs:Mechanism,design and application for bioimaging.Coord Chem Rev,2019,381:104-134
    32 Yi H,Ghosh D,Ham MH,et al.M13 phage-functionalized singlewalled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors.Nano Lett,2012,12:1176-1183
    33 Welsher K,Sherlock SP,Dai H.Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second nearinfrared window.Proc Natl Acad Sci USA,2011,108:8943-8948
    34 OConnell MJ,Bachilo SM,Huffman CB,et al.Band gap fluorescence from individual single-walled carbon nanotubes.Science,2002,297:593-596
    35 Kodach VM,Kalkman J,Faber DJ,et al.Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm.Biomed Opt Express,2010,1:176
    36 Choi JH,Nguyen FT,Barone PW,et al.Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes.Nano Lett,2007,7:861-867
    37 MartiniI,Eliseeva SV,Petoud S.Near-infrared emitting probes for biological imaging:Organic fluorophores,quantum dots,fluorescent proteins,lanthanide(III)complexes and nanomaterials.J Lumin,2017,189:19-43
    38 Carr JA,Franke D,Caram JR,et al.Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green.Proc Natl Acad Sci USA,2018,115:4465-4470
    39 Li Y,Li X,Xue Z,et al.Second near-infrared emissive lanthanide complex for fast renal-clearable in vivo optical bioimaging and tiny tumor detection.Biomaterials,2018,169:35-44
    40 Chen G,Tian F,Li C,et al.In vivo real-time visualization of mesenchymal stem cells tropism for cutaneous regeneration using NIR-II fluorescence imaging.Biomaterials,2015,53:265-273
    41 Hong G,Robinson JT,Zhang Y,et al.In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region.Angew Chem Int Ed,2012,51:9818-9821
    42 Semonin OE,Johnson JC,Luther JM,et al.Absolute photoluminescence quantum yields of IR-26 dye,PbS,and PbSe quantum dots.J Phys Chem Lett,2010,1:2445-2450
    43 Hong G,Zou Y,Antaris AL,et al.Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second nearinfrared window.Nat Commun,2014,5:4206
    44 Tsuboi S,Yamada S,Nakane Y,et al.Critical review-watersoluble near-infrared fluorophores emitting over 1000 nm and their application to in vivo imaging in the second optical window(1000-1400 nm).ECS J Solid State Sci Technol,2018,7:R3093-R3101
    45 Naczynski DJ,Tan MC,Riman RE,et al.Rare earth nanoprobes for functional biomolecular imaging and theranostics.J Mater Chem B,2014,2:2958-2973
    46 Naczynski DJ,Tan MC,Zevon M,et al.Rare-earth-doped biological composites as in vivo shortwave infrared reporters.Nat Commun,2013,4:2199
    47 Huang P,Tu D,Zheng W,et al.Inorganic lanthanide nanoprobes for background-free luminescent bioassays.Sci China Mater,2015,58:156-177
    48 Wang J,Liu G,Engelhard MH,et al.Sensitive immunoassay of a biomarker tumor necrosis factor-αbased on poly(guanine)-functionalized silica nanoparticle label.Anal Chem,2006,78:6974-6979
    49 Kamaly N,Xiao Z,Valencia PM,et al.Targeted polymeric therapeutic nanoparticles:design,development and clinical translation.Chem Soc Rev,2012,41:2971
    50 Zheng W,Huang P,Tu D,et al.Lanthanide-doped upconversion nano-bioprobes:electronic structures,optical properties,and biodetection.Chem Soc Rev,2015,44:1379-1415
    51 Ding F,Zhan Y,Lu X,et al.Recent advances in near-infrared IIfluorophores for multifunctional biomedical imaging.Chem Sci,2018,9:4370-4380
    52 Gai S,Li C,Yang P,et al.Recent progress in rare earth micro/nanocrystals:soft chemical synthesis,luminescent properties,and biomedical applications.Chem Rev,2014,114:2343-2389
    53 Yang D,Ma P,Hou Z,et al.Current advances in lanthanide ion(Ln3+)-based upconversion nanomaterials for drug delivery.Chem Soc Rev,2015,44:1416-1448
    54 Dai Y,Xiao H,Liu J,et al.In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles.J Am Chem Soc,2013,135:18920-18929
    55 You W,Tu D,Zheng W,et al.Large-scale synthesis of uniform lanthanide-doped NaREF4upconversion/downshifting nanoprobes for bioapplications.Nanoscale,2018,10:11477-11484
    56 Zhang X,Zhao Z,Zhang X,et al.Magnetic and optical properties of NaGdF4:Nd3+,Yb3+,Tm3+nanocrystals with upconversion/downconversion luminescence from visible to the near-infrared second window.Nano Res,2014,8:636-648
    57 Lei X,Li R,Tu D,et al.Intense near-infrared-II luminescence from NaCeF4:Er/Yb nanoprobes for in vitro bioassay and in vivo bioimaging.Chem Sci,2018,9:4682-4688
    58 He X,Ma N.An overview of recent advances in quantum dots for biomedical applications.Colloids Surfs B-Biointerfaces,2014,124:118-131
    59 Xu S,Cui J,Wang L.Recent developments of low-toxicity NIR IIquantum dots for sensing and bioimaging.TrAC Trends Anal Chem,2016,80:149-155
    60 Zhao J,Zhong D,Zhou S.NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy.J Mater Chem B,2018,6:349-365
    61 Sharma P,Kumar Mehra N,Jain K,et al.Biomedical applications of carbon nanotubes:a critical review.Curr Drug Deliv,2016,13:796-817
    62 Wang X,Hu H,Zhang H,et al.Single ultrasmall Mn2+-doped NaNdF4nanocrystals as multimodal nanoprobes for magnetic resonance and second near-infrared fluorescence imaging.Nano Res,2017,11:1069-1081
    63 Yu Z,Shi J,Li J,et al.Luminescence enhancement of CaF2:Nd3+nanoparticles in the second near-infrared window for in vivo imaging through Y3+doping.J Mater Chem B,2018,6:1238-1243
    64 Chen G,Ohulchanskyy TY,Liu S,et al.Core/shell NaGdF4:Nd3+/NaGdF4nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications.ACS Nano,2012,6:2969-2977
    65 Thimsen E,Sadtler B,Berezin MY.Shortwave-infrared(SWIR)emitters for biological imaging:a review of challenges and opportunities.Nanophotonics,2017,6:1043-1054
    66 Fischer S,Bronstein ND,Swabeck JK,et al.Precise tuning of surface quenching for luminescence enhancement in core-shell lanthanide-doped nanocrystals.Nano Lett,2016,16:7241-7247
    67 Zhong Y,Ma Z,Zhu S,et al.Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond1500 nm.Nat Commun,2017,8:737
    68 Tan M,Del Rosal B,Zhang Y,et al.Rare-earth-doped fluoride nanoparticles with engineered long luminescence lifetime for time-gated in vivo optical imaging in the second biological window.Nanoscale,2018,10:17771-17780
    69 Cao C,Xue M,Zhu X,et al.Energy transfer highway in Nd3+-sensitized nanoparticles for efficient near-infrared bioimaging.ACS Appl Mater Interfaces,2017,9:18540-18548
    70 Shao W,Chen G,Kuzmin A,et al.Tunable narrow band emissions from dye-sensitized core/shell/shell nanocrystals in the second near-infrared biological window.J Am Chem Soc,2016,138:16192-16195
    71 Rocha U,Jacinto da Silva C,Ferreira Silva W,et al.Subtissue thermal sensing based on neodymium-doped LaF3nanoparticles.ACS Nano,2013,7:1188-1199
    72 Wang D,Wang D,Kuzmin A,et al.ICG-sensitized NaYF4:Er nanostructure for theranostics.Adv Opt Mater,2018,6:1701142
    73 Xue Z,Zeng S,Hao J.Non-invasive through-skull brain vascular imaging and small tumor diagnosis based on NIR-II emissive lanthanide nanoprobes beyond 1500 nm.Biomaterials,2018,171:153-163
    74 Liu Y,Luo W,Zhu H,et al.Optical spectroscopy of lanthanides doped in wide band-gap semiconductor nanocrystals.J Lumin,2011,131:415-422
    75 Milstein TJ,Kroupa DM,Gamelin DR.Picosecond quantum cutting generates photoluminescence quantum yields over 100%in ytterbium-doped CsPbCl3nanocrystals.Nano Lett,2018,18:3792-3799
    76 Xiao Q,Zhu H,Tu D,et al.Near-infrared-to-near-infrared downshifting and near-infrared-to-visible upconverting luminescence of Er3+-doped In2O3nanocrystals.J Phys Chem C,2013,117:10834-10841
    77 Zhou D,Liu D,Pan G,et al.Cerium and ytterbium codoped halide perovskite quantum dots:a novel and efficient downconverter for improving the performance of silicon solar cells.Adv Mater,2017,29:1704149
    78 Kong J,Zhu H,Li R,et al.Carrier-mediated 155μm photoluminescence from single Er3+center in SnO2nanocrystals.Opt Lett,2009,34:1873-1875
    79 Swabeck JK,Fischer S,Bronstein ND,et al.Broadband sensitization of lanthanide emission with indium phosphide quantum dots for visible to near-infrared downshifting.J Am Chem Soc,2018,140:9120-9126
    80 Fu C,Liao J,Luo W,et al.Emission of 153μm originating from the lattice site of Er3+ions incorporated in TiO2nanocrystals.Opt Lett,2008,33:953
    81 Liu Y,Luo W,Li R,et al.Near-infrared luminescence of Nd3+and Tm3+ions doped ZnO nanocrystals.Opt Express,2009,17:9748-9753
    82 Liu Y,Luo W,Li R,et al.Optical properties of Nd3+ion-doped ZnO nanocrystals.j nanosci nanotechnol,2010,10:1871-1876
    83 Martín-Rodríguez R,Geitenbeek R,Meijerink A.Incorporation and luminescence of Yb3+in CdSe nanocrystals.J Am Chem Soc,2013,135:13668-13671
    84 Duan J,Zhao Y,Yang X,et al.Lanthanide ions doped CsPbBr3halides for HTM-free 10.14%-efficiency inorganic perovskite solar cell with an ultrahigh open-circuit voltage of 1.594 V.Adv Energy Mater,2018,8:1802346
    85 Mir WJ,Mahor Y,Lohar A,et al.Postsynthesis doping of Mn and Yb into CsPbX3(X=Cl,Br,or I)perovskite nanocrystals for downconversion emission.Chem Mater,2018,30:8170-8178
    86 Naczynski DJ,Sun C,Türkcan S,et al.X-ray-induced shortwave infrared biomedical imaging using rare-earth nanoprobes.Nano Lett,2015,15:96-102
    87 Liu L,Wang S,Zhao B,et al.Er3+sensitized 1530 nm to 1180 nm second near-infrared window upconversion nanocrystals for in vivo biosensing.Angew Chem Int Ed,2018,57:7518-7522
    88 Cheng X,Ge H,Wei Y,et al.Design for brighter photon upconversion emissions via energy level overlap of lanthanide ions.ACS Nano,2018,12:10992-10999
    89 Cheng X,Pan Y,Yuan Z,et al.Er3+sensitized photon upconversion nanocrystals.Adv Funct Mater,2018,28:1800208
    90 Zhydachevskyy Y,Tsiumra V,Baran M,et al.Quantum efficiency of the down-conversion process in Bi3+-Yb3+co-doped Gd2O3.JLumin,2018,196:169-173
    91 Li Y,Zeng S,Hao J.Non-invasive optical guided tumor metastasis/vessel imaging by using lanthanide nanoprobe with enhanced down-shifting emission beyond 1500 nm.ACS Nano,2019,13:248-259
    92 Quintanilla M,Zhang Y,Liz-Marzán LM.Subtissue plasmonic heating monitored with CaF2:Nd3+,Y3+nanothermometers in the second biological window.Chem Mater,2018,30:2819-2828
    93 Zhou J,Shirahata N,Sun HT,et al.Efficient dual-modal NIR-toNIR emission of rare earth ions co-doped nanocrystals for biological fluorescence imaging.J Phys Chem Lett,2013,4:402-408
    94 Li Y,Tang J,Pan DX,et al.A versatile imaging and therapeutic platform based on dual-band luminescent lanthanide nanoparticles toward tumor metastasis inhibition.ACS Nano,2016,10:2766-2773
    95 Yu XF,Chen LD,Li M,et al.Highly efficient fluorescence of NdF3/SiO2core/shell nanoparticles and the applications for in vivo NIR detection.Adv Mater,2008,20:4118-4123
    96 Zhang J,Shade CM,Chengelis DA,et al.A strategy to protect and sensitize near-infrared luminescent Nd3+and Yb3+:organic tropolonate ligands for the sensitization of Ln3+-doped NaYF4nanocrystals.J Am Chem Soc,2007,129:14834-14835
    97 Ju Q,Luo W,Liu Y,et al.Poly(acrylic acid)-capped lanthanidedoped BaFCl nanocrystals:synthesis and optical properties.Nanoscale,2010,2:1208-1212
    98 Li X,Zhang Q,Ahmad Z,et al.Near-infrared luminescent CaTiO3:Nd3+nanofibers with tunable and trackable drug release kinetics.J Mater Chem B,2015,3:7449-7456
    99 Wang P,Fan Y,Lu L,et al.NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer.Nat Commun,2018,9:2898
    100 Qin QS,Zhang PZ,Sun LD,et al.Ultralow-power near-infrared excited neodymium-doped nanoparticles for long-term in vivo bioimaging.Nanoscale,2017,9:4660-4664
    101 Ren F,Ding L,Liu H,et al.Ultra-small nanocluster mediated synthesis of Nd3+-doped core-shell nanocrystals with emission in the second near-infrared window for multimodal imaging of tumor vasculature.Biomaterials,2018,175:30-43
    102 Wang R,Li X,Zhou L,et al.Epitaxial seeded growth of rare-earth nanocrystals with efficient 800 nm near-infrared to 1525 nm short-wavelength infrared downconversion photoluminescence for in vivo bioimaging.Angew Chem Int Ed,2014,53:12086-12090
    103 Kamimura M,Omoto A,Chiu HC,et al.Enhanced red upconversion emission of NaYF4:Yb3+,Er3+,Mn2+nanoparticles for near-infrared-induced photodynamic therapy and fluorescence imaging.Chem Lett,2017,46:1076-1078
    104 Zhan Q,Qian J,Liang H,et al.Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation.ACS Nano,2011,5:3744-3757
    105 Li X,Wang R,Zhang F,et al.Nd3+sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm.Sci Rep,2013,3:3536
    106 Smith AM,Mancini MC,Nie S.Second window for in vivo imaging.Nat Nanotechnol,2009,4:710-711
    107 Del Rosal B,Ortgies DH,Fernández N,et al.Overcoming autofluorescence:long-lifetime infrared nanoparticles for time-gated in vivo imaging.Adv Mater,2016,28:10188-10193
    108 Hoffmann K,Behnke T,Drescher D,et al.Near-infrared-emitting nanoparticles for lifetime-based multiplexed analysis and imaging of living cells.ACS Nano,2013,7:6674-6684
    109 Ortgies DH,Tan M,Ximendes EC,et al.Lifetime-encoded infrared-emitting nanoparticles forin vivo multiplexed imaging.ACS Nano,2018,12:4362-4368
    110 Fan Y,Wang P,Lu Y,et al.Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging.Nat Nanotechnol,2018,13:941-946
    111 Tu D,Liu L,Ju Q,et al.Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4nanocrystals.Angew Chem Int Ed,2011,50:6306-6310
    112 Liu Y,Zhou S,Tu D,et al.Amine-functionalized lanthanidedoped zirconia nanoparticles:optical spectroscopy,time-resolved fluorescence resonance energy transfer biodetection,and targeted imaging.J Am Chem Soc,2012,134:15083-15090
    113 Zheng W,Zhou S,Chen Z,et al.Sub-10 nm lanthanide-doped CaF2nanoprobes for time-resolved luminescent biodetection.Angew Chem Int Ed,2013,52:6671-6676
    114 Huang P,Zheng W,Zhou S,et al.Lanthanide-doped Li Lu F4upconversion nanoprobes for the detection of disease biomarkers.Angew Chem Int Ed,2014,53:1252-1257
    115 Zhou S,Zheng W,Chen Z,et al.Dissolution-enhanced luminescent bioassay based on inorganic lanthanide nanoparticles.Angew Chem Int Ed,2014,108:12498-12502
    116 Xu J,Zhou S,Tu D,et al.Sub-5 nm lanthanide-doped lutetium oxyfluoride nanoprobes for ultrasensitive detection of prostate specific antigen.Chem Sci,2016,7:2572-2578
    117 Tao Z,Dang X,Huang X,et al.Early tumor detection afforded by in vivo imaging of near-infrared II fluorescence.Biomaterials,2017,134:202-215
    118 Ximendes EC,Santos WQ,Rocha U,et al.Unveiling in vivo subcutaneous thermal dynamics by infrared luminescent nanothermometers.Nano Lett,2016,16:1695-1703
    119 Cerón EN,Ortgies DH,Del Rosal B,et al.Hybrid nanostructures for high-sensitivity luminescence nanothermometry in the second biological window.Adv Mater,2015,27:4781-4787
    120 Kolesnikov IE,Golyeva EV,Kalinichev AA,et al.Nd3+single doped YVO4nanoparticles for sub-tissue heating and thermal sensing in the second biological window.Sensor Actuat B-Chem,2017,243:338-345
    121 Balabhadra S,Debasu ML,Brites CDS,et al.Implementing luminescence thermometry at 1.3μm using(GdNd)2O3nanoparticles.J Lumin,2016,180:25-30
    122 Hernández-Rodríguez MA,Lozano-Gorrín AD,Martín IR,et al.Comparison of the sensitivity as optical temperature sensor of nano-perovskite doped with Nd3+ions in the first and second biological windows.Sensor Actuat B-Chem,2018,255:970-976
    123 Marciniak L,Bednarkiewicz A.Nanocrystalline NIR-to-NIR luminescent thermometer based on Cr3+,Yb3+emission.Sensor Actuat B-Chem,2017,243:388-393
    124 Xu M,Zou X,Su Q,et al.Ratiometric nanothermometer in vivo based on triplet sensitized upconversion.Nat Commun,2018,9:2698
    125 Brites CDS,Lima PP,Silva NJO,et al.A luminescent molecular thermometer for long-term absolute temperature measurements at the nanoscale.Adv Mater,2010,22:4499-4504
    126 Maestro LM,Haro-González P,Iglesias-de la Cruz MC,et al.Fluorescent nanothermometers provide controlled plasmonicmediated intracellular hyperthermia.Nanomedicine,2013,8:379-388
    127 Okabe K,Inada N,Gota C,et al.Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy.Nat Commun,2012,3:705
    128 Wawrzynczyk D,Bednarkiewicz A,Nyk M,et al.Neodymium(III)doped fluoride nanoparticles as non-contact optical temperature sensors.Nanoscale,2012,4:6959-6961
    129 Benayas A,del Rosal B,Pérez-Delgado A,et al.Nd:YAG nearinfrared luminescent nanothermometers.Adv Opt Mater,2015,3:687-694

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700