低阶煤颗粒-气/油泡间的疏水力常数研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation of hydrophobicity constants between air/oily bubbles and low-rank coal particles
  • 作者:王市委 ; 陈松降 ; 陶秀祥 ; 石开仪 ; 陈鹏 ; 陈文辉
  • 英文作者:WANG Shiwei;CHEN Songjiang;TAO Xiuxiang;SHI Kaiyi;CHEN Peng;CHEN Wenhui;School of Chemistry and Materials Engineering,Liupanshui Normal University;School of Chemical Engineering and Technology,China University of Mining and Technology;
  • 关键词:低阶煤 ; 疏水力常数 ; 水化膜 ; 油泡 ; 诱导时间 ; non-DLVO理论
  • 英文关键词:low rank coal;;hydrophobic force constant;;water film;;oily bubble;;induction time;;non-DLVO theory
  • 中文刊名:煤炭学报
  • 英文刊名:Journal of China Coal Society
  • 机构:六盘水师范学院化学与材料工程学院;中国矿业大学化工学院;
  • 出版日期:2019-03-27 08:48
  • 出版单位:煤炭学报
  • 年:2019
  • 期:07
  • 基金:国家自然科学基金资助项目(51774284);; 六盘水师范学院校级基金资助项目(LPSSYKYJJ201811);; 贵州省科技厅科技平台及人才团队计划资助项目(黔科合平台人才[2017]5721)
  • 语种:中文;
  • 页:292-300
  • 页数:9
  • CN:11-2190/TD
  • ISSN:0253-9993
  • 分类号:TD94;TD923
摘要
浮选实验表明油泡对低阶煤颗粒的捕收能力要远强于传统浮选过程的起泡。这主要是由于油泡表面被捕收剂覆盖,其表面疏水性要远高于气泡表面的疏水性。因此,在油泡浮选矿化过程中,低阶煤颗粒-油泡间水化膜的薄化速度要远快于煤颗粒-气泡间的薄化速度。诱导时间测试发现,随着DAH溶液浓度从10~(-7) mol/L增加到5×10~(-5) mol/L时,低阶煤颗粒-气泡间的诱导时间从93 ms下降到12 ms。随着DAH溶液浓度从5×10~(-5) mol/L增加到10~(-3) mol/L时,低阶煤颗粒-气泡间的诱导时间从12 ms增加到35 ms。当DAH浓度由10~(-7) mol/L(纯去离子水溶液)增加到5×10~(-5) mol/L,低阶煤颗粒-油泡间的诱导时间由35 ms降低到10 ms。随着DAH浓度的进一步增加到10~(-3) mol/L时,低阶煤颗粒-油泡间的诱导时间由10 ms增加到25 ms。为了从微观尺度下去表征油泡表面较气泡表面所具有的强疏水性,本文通过低阶煤颗粒-油/气泡间的诱导时间,利用non-DLVO理论及Stefan-Reynolds水化膜薄化模型,拟合出初始水化膜厚度h与疏水性常数K_(132)之间的关系,进而得到了低阶煤颗粒-油/气泡间的疏水力常数K_(132)与十二烷胺盐酸盐DAH溶液浓度的关系。疏水力常数K_(132)拟合结果表明,当DAH溶液的浓度为5×10~(-5) mol/L时,低阶煤颗粒-油泡间的疏水力常数K_(132)约为低阶煤颗粒-气泡间的疏水力常数K_(132)的3倍;当DAH溶液的浓度为10~(-6) mol/L时,前者是后者的15倍。因此,油泡表面较气泡具有更强的疏水性质。从而解释了低阶煤-油泡浮选矿化过程优于传统浮选过程的本质特征。
        Flotation results showed that the ability of oily bubbles to collect low-rank coal particles is much stronger than that of air bubble in traditional flotation processes.It is because the surface of the oily bubble is covered by the collector,and its surface is much more hydrophobic than the surface of the air bubble.Therefore,in the interaction process of low-rank coal particle-oily bubble,the thinning speed of hydration film is much faster than that of low-rank coal particle-air bubble.The results of induction time test indicated that the induction time between low-rank coal particles and air bubbles decreased from 93 ms to 12 ms as the concentration of DAH solution increased from 10~(-7) mol/L to 5×10~(-5) mol/L.As the concentration of DAH solution increased from 5×10~(-5) mol/L to 10~(-3) mol/L,the induction time between low-rank coal particles and air bubbles increased from 12 ms to 35 ms.The induction time between low-rank coal particles and oily bubbles decreased from 35 ms to 10 ms while the DAH concentration was increased from 10~(-7) mol/L(pure deionized water solution) to 5×10~(-5) mol/L.As the DAH concentration increased to 10~(-3) mol/L,the induction time between low-rank coal particles and oily bubbles increased from 10 ms to 25 ms.In order to compare the strong surface hydrophobicity of the oily bubble with the surface hydrophobicity of the bubble from the microscopic scale,the non-DLVO theory and the Stefan-Reynolds hydration film thinning model were adopted.Based on the induction time results of low-rank coal particles-oily/bubble,the relationship between the initial hydration film thickness(h) and the hydrophobicity constant(K_(132)) was fitted.Moreover,the relationship between the hydrophobic force constant(K_(132)) and the concentrations of the DAH solution was obtained.The fitting results of hydrophobic force constant(K_(132)) showed that the hydrophobic force constant(K_(132)) between low-rank coal particles and oily bubbles was three times than that between low-rank coal particles and air bubbles while the concentration of DAH solution was 5×10~(-5) mol/L.The hydrophobic force constant(K_(132)) between low-rank coal particles and oily bubbles was in the order of 10~(-16) while the concentration of DAH solution is 10~(-6) mol/L.The hydrophobic force constant(K_(132)) between low-rank coal particles and oily bubbles was 15 times than that between low-rank coal particles and air bubbles.Therefore,the surface hydrophobicity of the oily bubble was stronger than that of the air bubble.Thus,it concluded that the oily bubble flotation process is superior to the traditional flotation process.
引文
[1] 安茂燕,蒋荣立.低阶煤浮选研究现状及分析[J].能源技术与管理,2012(1):117-119.
    [2] 屈进州,陶秀祥,唐龙飞,等.神东低阶煤浮选前后表面性质的表征研究[J].中国煤炭,2014(8):88-92.QU Jinzhou,TAO Xiuxiang,TANG Longfei,et al.Research on characterization of surface properities of Shendong low rank coal before and after flotation[J].China Coal,2014(8):88-92.
    [3] 王永刚,周剑林,林雄超.低阶煤含氧官能团赋存状态及其对表面性质的影响[J].煤炭科学技术,2013,41(9):182-184.WANG Yonggang,ZHOU Jianlin,LIN Xiongchao.Deposit conditions of oxygen functional groups in low rank coal and affected to surface properties[J].Coal Science and Technology,2013,41(9):182-184.
    [4] MAJKA-Myrcha B,GIRCZYS J.The effect of redox conditions on the floatability of coal[J].Coal Preparation,1993,13(1-2):21-30.
    [5] CHANDER S,POLAT H,MOHAL B.Flotation and wettability of a low-rank coal in the presence of surfactants[J].Minerals & Metallurgical Processing,1994,11(1):55-61.
    [6] LIU J,MAK T,ZHOU Z,et al.Fundamental study of reactive oily-bubble flotation[J].Minerals Engineering,2002,15(9):667-676.
    [7] WANG S,TAO X.Comparison of flotation performances of low rank coal in air and oily bubble processes[J].Powder Technology,2017,320:37-42.
    [8] XIA W,YANG J,ROMAN N.Experimental design of oily bubbles in oxidized coal flotation[J].Gospodarka Surowcami Mineralnymi,2013,29(4):129-136.
    [9] 陈松降,陶秀祥,何环,等.油泡-低阶煤颗粒间的黏附特性[J].煤炭学报,2017,42(3):745-752.CHEN Songjiang,TAO Xiuxiang,HE Huan,et al.Attachment characteristics between oily bubbles and low rank coal particles[J].Journal of China Coal Society,2017,42(3):745-752.
    [10] 杨曌,陈松降,陶秀祥,等.胜利褐煤的改性油泡浮选机理[J].煤炭学报,2018,43(3):824-830.YANG Zhao,CHEN Songjiang,TAO Xiuxiang,et al.Mechanism of modified-oily-bubble flotation of Shengli lignite[J].Journal of China Coal Society,2018,43(3):824-830.
    [11] LIAO Y,CAO Y,LIU C,et al.A Study of kinetics on oily-bubble flotation for a low-rank coal[J].International Journal of Coal Preparation and Utilization,2016,36(3):151-162.
    [12] TARKAN H M,FINCH J A.Air-assisted solvent extraction:towards a novel extraction process[J].Minerals Engineering,2005,18(1):83-88.
    [13] TARKAN H M,BAYLISS D K,FINCH J A.Investigation on foaming properties of some organics for oily bubble bitumen flotation[J].International Journal of Mineral Processing,2009,90(1-4):90-96.
    [14] BASNAYAKA L,SUBASINGHE N,ALBIJANIC B.Influence of clays on the slurry rheology and flotation of a pyritic gold ore[J].Applied Clay Science,2017,136:230-238.
    [15] GU G,XU Z,NANDAKUMAR K,et al.Effects of physical environment on induction time of air-bitumen attachment[J].International Journal of Mineral Processing,2003,69(1):235-250.
    [16] YOON R,YORDAN J.Induction time measurements for the quartz-amine flotation system[J].Colloid Interface Science,1991,141(2):374-383.
    [17] DESIMONI E,CASELLA G I,SALVI A M.XPS/XAES study of carbon fibres during thermal annealing under UHV conditions[J].Carbon,1992,30(4):521-526.
    [18] FIEDLER R,BENDLER D.ESCA investigations on Schleenhain lignite lithotypes and the hydrogenation residues[J].Fuel,1992,71(4):381-388.
    [19] ALBIJANIC B,OZDEMIR O,NGUYEN A V,et al.A review of induction and attachment times of wetting thin films between air bubbles and particles and its relevance in the separation of particles by flotation[J].Advances in Colloid and Interface Science,2010,159(1):1-21.
    [20] YOON R H.The role of hydrodynamic and surface forces in bubble-particle interaction[J].International Journal of Mineral Processing,2000,58(1-4):129-143.
    [21] MAO L,YOON R H.Predicting flotation rates using a rate equation derived from first principles[J].International Journal of Mineral Processing,1997,51(1-4):171-181.
    [22] KRASOWSKA M,KRASTEV R,ROGALSKI M,et al.Air-facilitated three-phase contact formation at hydrophobic solid surfaces under dynamic conditions[J].Langmuir,2007,23(2):549-557.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700