面向工业生物技术的系统生物学
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Systems biology for industrial biotechnology
  • 作者:郑小梅 ; 郑平 ; 孙际宾
  • 英文作者:Xiaomei Zheng;Ping Zheng;Jibin Sun;Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences;Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:工业生物技术 ; 系统生物学 ; 多组学 ; 菌株设计 ; 发酵优化
  • 英文关键词:industrial biotechnology;;system biology;;multi-omics;;strain design;;fermentation optimization
  • 中文刊名:生物工程学报
  • 英文刊名:Chinese Journal of Biotechnology
  • 机构:中国科学院天津工业生物技术研究所;中国科学院系统微生物工程重点实验室;中国科学院大学;
  • 出版日期:2019-08-23 15:56
  • 出版单位:生物工程学报
  • 年:2019
  • 期:10
  • 基金:国家自然科学基金(Nos.31700085,31370113)资助~~
  • 语种:中文;
  • 页:160-178
  • 页数:19
  • CN:11-1998/Q
  • ISSN:1000-3061
  • 分类号:Q81
摘要
工业生物技术是以微生物细胞工厂利用可再生的生物原料来生产能源、材料与化学品等的生物技术,在解决资源、能源与环境等问题方面起着越来越重要的作用。系统生物学是全面解析微生物细胞工厂及其发酵过程从"黑箱"到"白箱"的重要研究方法。系统生物学借助基因组、转录组、蛋白质组、代谢组以及代谢流组等多组学数据,可解析微生物细胞工厂在RNA、蛋白与代谢物等不同水平上的变化规律与调控机制。目前,系统生物学在微生物细胞工厂的设计创建与发酵工艺优化中起着越来越重要的指导作用,许多成功应用实例不断涌现,推动着工业生物技术的快速发展。文中重点综述基因组、转录组、蛋白质组、代谢组与代谢流组以及基因组规模的网络模型等各组学技术的最新发展及其在工业生物技术尤其是菌株改造与发酵优化中的应用,并就工业生物技术中系统生物学的未来发展方向进行展望。
        In industrial biotechnology, microbial cell factories utilize renewable resources to produce energy, materials and chemicals. Industrial biotechnology plays an increasingly important role in solving the resource, energy and environmental problems. Systems biology has shed new light on industrial biotechnology, deepening our understanding of industrial microbial cell factories and their bioprocess from "Black-box" to "White-box". Systems-wide profiling of genome, transcriptome, proteome, metabolome, and fluxome has proven valuable to better unveil network operation and regulation on the genome scale. System biology has been successfully applied to create microbial cell factories for numerous products and derive attractive industrial processes, which has constantly expedited the development of industrial biotechnology. This review focused on the recent advance and applications of omics and trans-omics in industrial biotechnology, including genomics, transcriptomics, proteomics, metabolomics, fluxomics and genome scale modeling, and so on. Furthermore, this review also discussed the potential and promise of systems biology in industrial biotechnology.
引文
[1] Chen F, Ding CJ, Chen YW, et al. A study on global trends of industrial biotechnology and the perspectives in China. World Sci-Tech R&D, 2018,40(2):133–148(in Chinese).陈方,丁陈君,陈云伟,等.工业生物技术领域国际发展态势及我国发展前景展望.世界科技研究与发展, 2018, 40(2):133–148.
    [2] Campbell K, Xia JY, Nielsen J. The impact of systems biology on bioprocessing. Trends Biotechnol, 2017, 35(12):1156–1168.
    [3] Goodwin S, McPherson JD, McCombie WR.Coming of age:ten years of next-generation sequencing technologies. Nat Rev Genet, 2016,17(6):333–351.
    [4] Roberts RJ, Carneiro MO, Schatz MC. The advantages of SMRT sequencing. Genome Biol,2013, 14:405.
    [5] Sayers EW, Cavanaugh M, Clark K, et al. GenBank.Nucleic Acids Res, 2019, 47(D1):D94–D99.
    [6] Mukherjee S, Stamatis D, Bertsch J, et al. Genomes OnLine database(GOLD)v.7:updates and new features. Nucleic Acids Res, 2019, 47(D1):D649–D659.
    [7] Dehal PS, Joachimiak MP, Price MN, et al.MicrobesOnline:an integrated portal for comparative and functional genomics. Nucleic Acids Res, 2010, 38(D4):D396–D400.
    [8] Cherry JM, Hong EL, Amundsen C, et al.Saccharomyces genome database:the genomics resource of budding yeast. Nucleic Acids Res, 2012,40(D1):D700–D705.
    [9] Basenko EY, Pulman JA, Shanmugasundram A, et al. FungiDB:an integrated bioinformatic resource for fungi and oomycetes. J Fungi, 2018, 4(1):39.
    [10] Velculescu VE, Zhang L, Zhou W, et al.Characterization of the yeast transcriptome. Cell,1997, 88(2):243–251.
    [11] Clough E, Barrett T. The gene expression omnibus database//MathéE, Davis S, Eds. Statistical Genomics:Methods and Protocols. New York, NY:Humana Press, 2016:93–110.
    [12] Athar A, Füllgrabe A, George N, et al. ArrayExpress update-from bulk to single-cell expression data.Nucleic Acids Res, 2019, 47(D1):D711–D715.
    [13] Faith JJ, Driscoll ME, Fusaro VA, et al. Many microbe microarrays database:uniformly normalized Affymetrix compendia with structured experimental metadata. Nucleic Acids Res, 2008,36(D4):D866–D870.
    [14] Hoedt E, Zhang GA, Neubert TA. Stable isotope labeling by amino acids in cell culture(SILAC)for quantitative proteomics//Woods AG, Darie CC, Eds.Advancements of Mass Spectrometry in Biomedical Research. Cham:Springer, 2014:93–106.
    [15] Xiao Z, Veenstra TD. Comparison of protein expression by isotope-coded affinity tag labeling//Vlahou A, Ed. Clinical Proteomics:Methods and Protocols. Totowa, NJ:Humana Press, 2008:181–192.
    [16] Gan CS, Chong PK, Pham TK, et al. Technical,experimental, and biological variations in isobaric tags for relative and absolute quantitation(iTRAQ).J Proteome Res, 2007, 6(2):821–827.
    [17] Vizcaíno JA, C?téRG, Csordas A, et al. The PRoteomics IDEntifications(PRIDE)database and associated tools:status in 2013. Nucleic Acids Res,2013, 41(D1):D1063–D1069.
    [18] Craig R, Cortens JP, Beavis RC. Open source system for analyzing, validating, and storing protein identification data. J Proteome Res, 2004, 3(6):1234–1242.
    [19] McCord J, Sun Z, Deutsch EW, et al. The PeptideAtlas of the domestic laying hen. J Proteome Res, 2017, 16(3):1352–1363.
    [20] The UniProt Consortium. UniProt:a worldwide hub of protein knowledge. Nucleic Acids Res, 2019,47(D1):D506–D515.
    [21] Smith AC, Robinson AJ. MitoMiner v3.1, an update on the mitochondrial proteomics database. Nucleic Acids Res, 2016, 44(D1):D1258–D1261.
    [22] Nanjappa V, Thomas JK, Marimuthu A, et al.Plasma proteome database as a resource for proteomics research:2014 update. Nucleic Acids Res, 2014, 42(D1):D959–D965.
    [23] Urbanczyk-Wochniak E, Luedemann A, Kopka J, et al. Parallel analysis of transcript and metabolic profiles:a new approach in systems biology. EMBO Rep, 2003, 4(10):989–993.
    [24] Zhang QQ, Zheng XM, Wang Y, et al.Comprehensive optimization of the metabolomic methodology for metabolite profiling of Corynebacterium glutamicum. Appl Microbiol Biotechnol, 2018, 102(16):7113–7121.
    [25] Zheng XM, Yu JD, Cairns TC, et al. Comprehensive improvement of sample preparation methodologies facilitates dynamic metabolomics of Aspergillus niger. Biotechnol J, 2019, 14(3):1800315.
    [26] Meinert S, Rapp S, Schmitz K, et al. Quantitative quenching evaluation and direct intracellular metabolite analysis in Penicillium chrysogenum.Anal Biochem, 2013, 438(1):47–52.
    [27] Kim S, Lee DY, Wohlgemuth G, et al. Evaluation and optimization of metabolome sample preparation methods for Saccharomyces cerevisiae. Anal Chem,2013, 85(4):2169–2176.
    [28] Sch?del F, David F, Franco-Lara E. Evaluation of cell damage caused by cold sampling and quenching for metabolome analysis. Appl Microbiol Biotechnol, 2011, 92(6):1261–1274.
    [29] Guijas C, Montenegro-Burke JR,Domingo-Almenara X, et al. METLIN:a technology platform for identifying knowns and unknowns.Anal Chem, 2018, 90(5):3156–3164.
    [30] Kopka J, Schauer N, Krueger S, et al.GMD@CSB.DB:the golm metabolome database.Bioinformatics, 2005, 21(8):1635–1638.
    [31] Kale NS, Haug K, Conesa P, et al. MetaboLights:an open-access database repository for metabolomics data. Curr Protoc Bioinformatics, 2016, 53(1):14.13.1–14.13.18.
    [32] Wishart DS, Feunang YD, Marcu A, et al. HMDB4.0:the human metabolome database for 2018.Nucleic Acids Res, 2018, 46(D1):D608–D617.
    [33] Presnell KV, Alper HS. Systems metabolic engineering meets machine learning:a new era for data-driven metabolic engineering. Biotechnol J,2019, 14(9):1800416.
    [34] Guo WH, Sheng JY, Feng XY. 13C-metabolic flux analysis:an accurate approach to demystify microbial metabolism for biochemical production.Bioengineering, 2015, 3(1):3.
    [35] Shupletsov MS, Golubeva LI, Rubina SS, et al.OpenFLUX2:13C-MFA modeling software package adjusted for the comprehensive analysis of single and parallel labeling experiments. Microb Cell Fact,2014, 13:152.
    [36] Weitzel M, N?h K, Dalman T, et al.13CFLUX2-high-performance software suite for13C-metabolic flux analysis. Bioinformatics, 2013,29(1):143–145.
    [37] Young JD. INCA:a computational platform for isotopically non-stationary metabolic flux analysis.Bioinformatics, 2014, 30(9):1333–1335.
    [38] Zhang ZD, Shen T, Rui B, et al. CeCaFDB:a curated database for the documentation,visualization and comparative analysis of central carbon metabolic flux distributions explored by13C-fluxomics. Nucleic Acids Res, 2015, 43(D1):D549–D557.
    [39] Hua Q, Yang C. Application of metabolic flux ratio analysis in metabolic engineering-a review. Chin J Biotech, 2009, 25(9):1303–1311(in Chinese).花强,杨琛.代谢流量比率分析及其在代谢工程中的应用.生物工程学报, 2009, 25(9):1303–1311.
    [40] Chandrasekaran S, Price ND. Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci USA, 2010, 107(41):17845–17850.
    [41] Chi BF, Tao SH, Liu YL. Physiologically shrinking the solution space of a Saccharomyces cerevisiae genome-scale model suggests the role of the metabolic network in shaping gene expression noise.PLoS ONE, 2015, 10(10):e0139590.
    [42]?sterlund T, Nookaew I, Bordel S, Nielsen J.Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling.BMC Syst Biol. 2013, 7:36.
    [43] F?rster J, Famili I, Fu P, et al. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res, 2003, 13(2):244–253.
    [44] Sun JB, Lu X, Rinas U, et al. Metabolic peculiarities of Aspergillus niger disclosed by comparative metabolic genomics. Genome Biol, 2007, 8(9):R182.
    [45] Lu HZ, Cao WQ, Ouyang LM, et al. Comprehensive reconstruction and in silico analysis of Aspergillus niger genome-scale metabolic network model that accounts for 1210 ORFs. Biotechnol Bioeng, 2017,114(3):685–695.
    [46] Kanehisa M. The KEGG database//Bock G, Goode JA, Eds.‘In Silico’ Simulation of Biological Processes. Chichester, West Sussex:John Wiley,2002, 247:91–101.
    [47] Slenter DN, Kutmon M, Hanspers K, et al.WikiPathways:a multifaceted pathway database bridging metabolomics to other omics research.Nucleic Acids Res, 2018, 46(D1):D661–D667.
    [48] Caspi R, Billington R, Fulcher CA, et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res, 2018, 46(D1):D633–D639.
    [49] Karp PD, Ouzounis CA, Moore-Kochlacs C, et al.Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res, 2005, 33(19):6083–6089.
    [50] Goto S, Nishioka T, Kanehisa M. LIGAND:chemical database of enzyme reactions. Nucleic Acids Res, 2000, 28(1):380–382.
    [51] Schomburg I, Chang A, Hofmann O, et al.BRENDA:a resource for enzyme data and metabolic information. Trends Biochem Sci, 2002,27(1):54–56.
    [52] Lakshmanan M, Koh G, Chung BKS, et al. Software applications for flux balance analysis. Brief Bioinform, 2014, 15(1):108–122.
    [53] Gomez JA, Barton PI. Dynamic flux balance analysis using DFBAlab//Fondi M, Ed. Metabolic Network Reconstruction and Modeling:Methods and Protocols. New York, NY:Humana Press, 2018:353–370.
    [54] Sch?pe P, Kwon MJ, Baumann B, et al. Updating genome annotation for the microbial cell factory Aspergillus niger using gene co-expression networks. Nucleic Acids Res, 2019, 47(2):559–569.
    [55] Kludas J, Arvas M, Castillo S, et al. Machine learning of protein interactions in fungal secretory pathways. PLoS ONE, 2016, 11(7):e0159302.
    [56] Zhu ZW, Zhang SF, Liu HW, et al. A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides. Nat Commun, 2012, 3:1112.
    [57] Horai H, Arita M, Kanaya S, et al. MassBank:a public repository for sharing mass spectral data for life sciences. J Mass Spectrom, 2010, 45(7):703–714.
    [58] Nielsen J, Keasling JD. Engineering cellular metabolism. Cell, 2016, 164(6):1185–1197.
    [59] Chae TU, Choi SY, Kim JW, et al. Recent advances in systems metabolic engineering tools and strategies. Curr Opin Biotechnol, 2017, 47:67–82.
    [60] Choi KR, Jang WD, Yang D, et al. Systems metabolic engineering strategies:integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol, 2019, 37(8):817–837.
    [61] Guo YM, Zheng P, Sun JB. Aspergillus niger as a potential cellular factory:prior knowledge and key technology. Chin J Biotech, 2010, 26(10):1410–1418(in Chinese).郭艳梅,郑平,孙际宾.黑曲霉作为细胞工厂:知识准备与技术基础.生物工程学报, 2010, 26(10):1410–1418.
    [62] Kalyuzhnaya MG, Puri AW, Lidstrom ME.Metabolic engineering in methanotrophic bacteria.Metab Eng, 2015, 29:142–152.
    [63] Singh B. Myceliophthora thermophila syn.Sporotrichum thermophile:a thermophilic mould of biotechnological potential. Crit Rev Biotechnol,2016, 36(1):59–69.
    [64] Jouhten P, Boruta T, Andrejev S, et al. Yeast metabolic chassis designs for diverse biotechnological products. Sci Rep, 2016, 6:29694.
    [65] Chen Y, Daviet L, Schalk M, et al. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metab Eng, 2013, 15:48–54.
    [66] Galanie S, Thodey K, Trenchard IJ, et al. Complete biosynthesis of opioids in yeast. Science, 2015,349(6252):1095–1100.
    [67] Liu XN, Cheng J, Zhang GH, et al. Engineering yeast for the production of breviscapine by genomic analysis and synthetic biology approaches. Nat Commun, 2018, 9(1):448.
    [68] Fang H, Li D, Kang J, et al. Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12. Nat Commun, 2018, 9(1):4917.
    [69] Yin X, Shin HD, Li JH, et al. Comparative genomics and transcriptome analysis of Aspergillus niger and metabolic engineering for citrate production. Sci Rep, 2017, 7:41040.
    [70] Steiger MG, Rassinger A, Mattanovich D, et al.Engineering of the citrate exporter protein enables high citric acid production in Aspergillus niger.Metab Eng, 2019, 52:224–231.
    [71] Redding-Johanson AM, Batth TS, Chan R, et al.Targeted proteomics for metabolic pathway optimization:application to terpene production.Metab Eng, 2011, 13(2):194–203.
    [72] Alonso-Gutierrez J, Kim EM, Batth TS, et al.Principal component analysis of proteomics(PCAP)as a tool to direct metabolic engineering. Metab Eng,2015, 28:123–133.
    [73] Xu JY, Xu Y, Chu XH, et al. Protein acylation affects the artificial biosynthetic pathway for pinosylvin production in engineered E. coli. ACS Chem Biol, 2018, 13(5):1200–1208.
    [74] Meng HL, Xiong ZQ, Song SJ, et al. Construction of polyketide overproducing Escherichia coli strains via synthetic antisense RNAs based on in silico fluxome analysis and comparative transcriptome analysis. Biotechnol J, 2016, 11(4):530–541.
    [75] Ohtake T, Pontrelli S, Lavi?a WA, et al.Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli. Metab Eng, 2017, 41:135–143.
    [76] Lu HZ, Liu XY, Huang MZ, et al. Integrated isotope-assisted metabolomics and 13C metabolic flux analysis reveals metabolic flux redistribution for high glucoamylase production by Aspergillus niger. Microb Cell Fact, 2015, 14:147.
    [77] Lange A, Becker J, Schulze D, et al. Bio-based succinate from sucrose:high-resolution 13C metabolic flux analysis and metabolic engineering of the rumen bacterium Basfia succiniciproducens.Metab Eng, 2017, 44:198–212.
    [78] Yang C, Gao X, Jiang Y, et al. Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli.Metab Eng, 2016, 37:79–91.
    [79] Hoffmann SL, Jungmann L, Schiefelbein S, et al.Lysine production from the sugar alcohol mannitol:design of the cell factory Corynebacterium glutamicum SEA-3 through integrated analysis and engineering of metabolic pathway fluxes. Metab Eng, 2018, 47:475–487.
    [80] Mukhopadhyay A. Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends Microbiol, 2015, 23(8):498–508.
    [81] Zingaro KA, Papoutsakis ET. Toward a semisynthetic stress response system to engineer microbial solvent tolerance. mBio, 2012, 3(5):e00308–12.
    [82] Tomas CA, Welker NE, Papoutsakis ET.Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism,and changes in the cell's transcriptional program.Appl Environ Microbiol, 2003, 69(8):4951–4965.
    [83] Zhu CC, Chen JZ, Wang Y, et al. Enhancing5-aminolevulinic acid tolerance and production by engineering the antioxidant defense system of Escherichia coli. Biotechnol Bioeng, 2019, 116(8):2018–2028.
    [84] Horinouchi T, Sakai A, Kotani H, et al.Improvement of isopropanol tolerance of Escherichia coli using adaptive laboratory evolution and omics technologies. J Biotechnol, 2017, 255:47–56.
    [85] Wang XW, Li QG, Sun CM, et al.GREACE-assisted adaptive laboratory evolution in endpoint fermentation broth enhances lysine production by Escherichia coli. Microb Cell Fact,2019, 18:106.
    [86] Chung SC, Park JS, Yun J, et al. Improvement of succinate production by release of end-product inhibition in Corynebacterium glutamicum. Metab Eng, 2017, 40:157–164.
    [87] Thomson NM, Shirai T, Chiapello M, et al. Efficient3-hydroxybutyrate production by quiescent Escherichia coli microbial cell factories is facilitated by indole-induced proteomic and metabolomic changes. Biotechnol J, 2018, 13(5):1700571.
    [88] Tuyishime P, Wang Y, Fan LW, et al. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production. Metab Eng, 2018, 49:220–231.
    [89] Bracher JM, Verhoeven MD, Wisselink HW, et al.The Penicillium chrysogenum transporter PcAraT enables high-affinity, glucose-insensitive L-arabinose transport in Saccharomyces cerevisiae.Biotechnol Biofuels, 2018, 11:63.
    [90] Kawaguchi H, Yoshihara K, Hara KY, et al.Metabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of D-glucose and L-arabinose. Microb Cell Fact, 2018, 17:76.
    [91] Jones JA, Vernacchio VR, Sinkoe AL, et al.Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metab Eng, 2016, 35:55–63.
    [92] Pappu JSM, Gummadi SN. Modeling and simulation of xylitol production in bioreactor by Debaryomyces nepalensis NCYC 3413 using unstructured and artificial neural network models. Bioresour Technol,2016, 220:490–499.
    [93] Schwechheimer SK, Becker J, Peyriga L, et al.Improved riboflavin production with Ashbya gossypii from vegetable oil based on 13C metabolic network analysis with combined labeling analysis by GC/MS, LC/MS, 1D, and 2D NMR. Metab Eng,2018, 47:357–373.
    [94] Wang G, Tang WJ, Xia JY, et al. Integration of microbial kinetics and fluid dynamics toward model-driven scale-up of industrial bioprocesses.Eng Life Sci, 2015, 15(1):20–29.
    [95] de Jonge L, Buijs NAA, Heijnen JJ, et al. Flux response of glycolysis and storage metabolism during rapid feast/famine conditions in Penicillium chrysogenum using dynamic 13C labeling.Biotechnol J, 2014, 9(3):372–385.
    [96] Zheng XM, Zheng P, Sun JB, et al. Heterologous and endogenous U6 snRNA promoters enable CRISPR/Cas9 mediated genome editing in Aspergillus niger. Fungal Biol Biotechnol, 2018, 5:2.
    [97] Zheng XM, Zheng P, Zhang K, et al. 5S rRNA Promoter for guide RNA expression enabled highly efficient CRISPR/Cas9 genome editing in Aspergillus niger. ACS Synth Biol, 2019, 8(7):1568-1574.
    [98] Liu J, Wang Y, Lu YJ, et al. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum. Microb Cell Fact,2017, 16(1):205.
    [99] Wang Y, Liu Y, Liu J, et al. MACBETH:Multiplex automated Corynebacterium glutamicum base editing method. Metab Eng, 2018, 47:200–210.
    [100] Sun DH, Chen JZ, Wang Y, et al. Metabolic engineering of Corynebacterium glutamicum by synthetic small regulatory RNAs. J Ind Microbiol Biotechnol, 2019, 46(2):203–208.
    [101] Tong ZY, Zheng XM, Tong Y, et al. Systems metabolic engineering for citric acid production by Aspergillus niger in the post-genomic era. Microb Cell Fact, 2019, 18:28.
    [102] Barrett CL, Kim TY, Kim HU, et al. Systems biology as a foundation for genome-scale synthetic biology. Curr Opin Biotechnol, 2006, 17(5):488–492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700