用户名: 密码: 验证码:
反式肉桂醛对稻绿核菌细胞超微结构及3种呼吸酶活力的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of trans-cinnamaldehyde against Villosiclava virens on cell ultrastructure and activities of three respiratory enzymes
  • 作者:郑静格 ; 郭志芯 ; 刘婷婷 ; 毛连纲 ; 张燕宁 ; 张兰 ; 蒋红云
  • 英文作者:ZHENG Jingge;GUO Zhixin;LIU Tingting;MAO Liangang;ZHANG Yanning;ZHANG Lan;JIANG Hongyun;Institute of Plant Protection, Chinese Academy of Agricultural Sciences/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture and Rural Affairs of the People's Republic of China;
  • 关键词:反式肉桂醛 ; 稻绿核菌 ; 细胞超微结构 ; 烟酰胺腺嘌呤二核苷酸-苹果酸脱氢酶 ; 琥珀酸脱氢酶 ; 三磷酸腺苷酶
  • 英文关键词:trans-cinnamaldehyde;;Villosiclava virens;;cell ulstrastructure;;nicotinamide adenine dinucleotide-malic dehydrogenase;;succinate dehydrogenase;;adenosine triphosphatase
  • 中文刊名:农药学学报
  • 英文刊名:Chinese Journal of Pesticide Science
  • 机构:中国农业科学院植物保护研究所农业农村部农产品质量安全生物性危害因子(植物源)控制重点实验室;
  • 出版日期:2019-04-15 13:27
  • 出版单位:农药学学报
  • 年:2019
  • 期:02
  • 基金:国家重点研发计划项目(2016YFD0200500)
  • 语种:中文;
  • 页:32-38
  • 页数:7
  • CN:11-3995/S
  • ISSN:1008-7303
  • 分类号:S435.111.4
摘要
为初步探究反式肉桂醛(TC)对稻绿核菌的抑菌机制,采用透射电子显微镜观察了TC处理后稻绿核菌菌丝细胞的超微结构,并测定了2、4、8、15及30μg/mL系列质量浓度TC对稻绿核菌细胞壁完整性的影响,以及其对烟酰胺腺嘌呤二核苷酸-苹果酸脱氢酶(NADMDHase)、琥珀酸脱氢酶(SDHase)和三磷酸腺苷酶(ATPase)活力的影响。结果显示:经4μg/mL的TC处理后,菌丝细胞内脂质体显著增多,线粒体结构变模糊。当TC质量浓度升高至30μg/mL时,可破坏菌丝细胞壁的完整性,且对NAD-MDHase活力的相对抑制率为44.3%,对SDHase活力的相对抑制率为76.7%;而Na~+-K~+-ATPase、Ca~(2+)-Mg~(2+)-ATPase、Ca~(2+)-ATPase及Mg~(2+)-ATPase的活力随TC质量浓度升高呈U型变化,其中,4μg/mL的TC对ATPase活力的抑制效果最强,相对抑制率达78.4%以上。研究表明,细胞壁及线粒体可能是TC抑制稻绿核菌菌丝生长的作用靶点,具有进一步研究的价值。
        The antifungal mechanism of trans-cinnamaldehyde(TC) against Villosiclava virens was investigated. The alteration of cell ultrastructure was observed using transmission electron microscope.The integrity of cell wall and activities of nicotinamide adenine dinucleotide-malic dehydrogenase(NAD-MDHase), succinate dehydrogenase(SDHase) and adenosine triphosphatase(ATPase) of V.virens were determined after treated with TC at the mass concentration of 2, 4, 8, 15 and 30 μg/mL. The results showed that the contents of lipidosome increased significantly and the structure of mitochondrion was indiscernible after treatment with TC at the mass concentration of 4 μg/mL. With the mass concentration of TC increasing to 30 μg/mL, the integrity of cell wall in V. virens was destroyed and the relative inhibition of NAD-MDHase and SDHase were reduced by 44.3% and 76.7%,respectively. Differently, the activities of Na~+-K~+-ATPase, Ca~(2+)-Mg~(2+)-ATPase, Ca~(2+)-ATPase and Mg~(2+)-ATPase fluctuated as U-curve with the concentration increase of TC. When the mass concentration of TC was 4 μg/mL, the highest inhibitive activity of TC on ATPase was the achieved among all the tested concentrations and the relative inhibition of TC on ATPase was higher than 78.4%. These results suggested that the cell wall and mitochondrion were the possible action targets for TC to inhibit the mycelial growth.
引文
[1]FAN J,YANG J,WANG Y Q,et al.Current understanding on Villosiclava virens,a unique flower-infecting fungus causing rice false smut disease[J].Mol Plant Pathol,2016,17(9):1321-1330.
    [2]黄珊.水稻稻曲病研究进展[J].福建农业学报,2012,27(4):452-456.HUANG S.Advances on study of rice false smut(Ustilaginoidea virens)[J].Fujian J Agric Sci,2012,27(4):452-456.
    [3]陆明红,刘万才,朱凤.稻曲病近年流行规律及治理对策探讨[J].中国植保导航,2018,38(5):44-47.LU M H,LIU W C,ZHU F.Discussion on epidemic rule of rice false smut in recent years and its controlling strategy[J].China Plant Prot,2018,38(5):44-47.
    [4]KOISO Y,LI Y,IWASAKI S,et al.Ustiloxins,antimitotic cyclic peptides from false smut balls on rice panicles caused by Ustilaginoidea virens[J].J Antibiot,1994,47(7):765-773.
    [5]SUN W B,WANG A L,XU D,et al.New ustilaginoidins from rice false smut balls caused by Villosiclava virens and their phytotoxic and cytotoxic activities[J].J Agric Food Chem,2017,65(25):5151-5160.
    [6]王菲.水稻稻曲病菌遗传多样性及其抗DMI类杀菌剂分子机理的研究[D].武汉:华中农业大学,2015.WANG F.Study on genetic diversity and DMI fungicide resistance molecular mechanism of Villosiclava virens[D].Wuhan:Huazhong Agric Univ,2015.
    [7]李晓菲,徐政.植物源杀菌剂研究进展[J].南方农业,2018,12(13):40-45.LI X F,XU Z.Progress in research on botanical fungicides[J].Southern Agric,2018,12(13):40-45.
    [8]宋宗辉,张艺雯,王玲洁,等.肉桂醛的药理活性及其研究进展[J].解放军药学学报,2018,34(6):550-554.SONG Z H,ZHANG Y W,WANG L J,et al.Pharmacological activity of cinnamaldehyde and its research progress[J].Pharm J Chin PLA,2018,34(6):550-554.
    [9]JAKHETIA V,PATEL R,KHATRI P,et al.Cinnamon:a pharmacological review[J].J Adv Sci Res,2010,1(2):19-23.
    [10]农药登记毒理学试验方法:GB/T 15670.4-2017[S].北京:中国标准出版社,2017.Toxicological test methods of pesticides for registration:GB/T 15670.4-2017[S].Beijing:China Standards Press,2017.
    [11]申素霞.植物源食品防腐剂的筛选及肉桂醛的抑菌机制研究[D].长春:吉林大学,2015.SHEN S X.The screening of natural plant source food preservatives and the research of antimicrobial mechanism of cinnamaldehyde[D].Changchun:Jilin University,2015.
    [12]MAREI G I K,ABDELGALEIL S A M.Antifungal potential and biochemical effects of monoterpenes and phenylpropenes on plant[J].Plant Prot Sci,2017,54(1):9-16.
    [13]SCHL?SSER I,PRANGE A.Antifungal activity of selected natural preservatives against the foodborne molds Penicillium verrucosum and Aspergillus westerdijkiae[J].FEMS Microbiol Lett,2018,365(13):1-8.
    [14]XU L C,TAO N G,YANG W H,et al.Cinnamaldehyde damaged the cell membrane of Alternaria alternata and induced the degradation of mycotoxins in vivo[J].Ind Crop Prod,2018,112:427-433.
    [15]WANG H W,YANG Z X,YING G Y,et al.Antifungal evaluation of plant essential oils and their major components against toxigenic fungi[J].Ind Crop Prod,2018,120:180-186.
    [16]XIE Y J,HUANG Q Q,WANG Z J,et al.Structure-activity relationships of cinnamaldehyde and eugenol derivatives against plant pathogenic fungi[J].Ind Crop Prod,2017,97:388-394.
    [17]FRIEDMAN M.Chemistry,antimicrobial mechanisms,and antibiotic activities of cinnamaldehyde against pathogenic bacteria in animal feeds and human foods[J].J Agric Food Chem,2017,65(48):10406-10423.
    [18]SERRA E,HIDALGO-BASTIDA L A,VERRAN J,et al.Antifungal activity of commercial essential oils and biocides against Candida Albicans[J].Pathogens,2018,7(1):15.
    [19]张文娟.肉桂醛抗黄曲霉作用及超微结构观察的研究[J].北京医科大学学报,1995,27(5):374.ZHANG W J.Sthudy on the antifungal effect of cinnamaldehyde against Aspergillus flavus and ultrastructure observation[J].J Peking Univ(Health Sci),1995,27(5):374.
    [20]TANG X,SHAO Y L,TANG Y J,et al.Antifungal activity of essential oil compounds(geraniol and citral)and inhibitory mechanisms on grain pathogens(Aspergillus flavus and Aspergillus ochraceus)[J].Molecules,2018,23(9):2108-2125.
    [21]PEREIRA F D E O,MENDES J M,LIMA I O,et al.Antifungal activity of geraniol and citronellol,two monoterpenes alcohols,against Trichophyton rubrum involves inhibition of ergosterol biosynthesis[J].Pharm Biol,2015,53(2):228-234.
    [22]BANG K H,LEE D W,PARK H M,et al.Inhibition of fungal cell wall synthesizing enzymes by trans-cinnamaldehyde[J].Biosci Biotechnol Biochem,2000,64(5):1061-1063.
    [23]SHREAZ S,BHATIA R,KHAN N,et al.Influences of cinnamic aldehydes on H+extrusion activity and ultrastructure of Candida[J].JMed Microbiol,2013,62(Pt 2):232-240.
    [24]USTA J,KREYDIYYEH S,BARNABE P,et al.Comparative study on the effect of cinnamon and clove extracts and their main components on different types of ATPases[J].Hum Exp Toxicol,2003,22(7):355-362.
    [25]ZENG H,CHEN X P,LIANG J N.In vitro antifungal activity and mechanism of essential oil from fennel(Foeniculum vulgare L.)on dermatophyte species[J].J Med Microbiol,2015,64(Pt 1):93-103.
    [26]TIAN J,ZENG X B,FENG Z Z,et al.Zanthoxylum molle Rehd.essential oil as a potential natural preservative in management of Aspergillus flavus[J].Ind Crop Prod,2014,61(1):151-159.
    [27]MA M M,WEN X F,XIE Y T,et al.Antifungal activity and mechanism of monocaprin against food spoilage fungi[J].Food Control,2018,84:561-568.
    [28]FERREIRA M D O P,CARDOSO M F,DA SILVA F D E C,et al.Antifungal activity of synthetic naphthoquinones against dermatophytes and opportunistic fungi:preliminary mechanism-ofaction tests[J].Ann Clin Microbiol Antimicrob,2014,13(1):26-31.
    [29]邢来君,李明春,魏东盛.普通真菌学[M].北京:高等教育出版社,2010:114-117.XING L J,LI M C,WEI D S.General mycology[M].Advanced Education Press,2010:114-117.
    [30]何玲,袁会珠,唐剑锋,等.新型杀菌剂氟醚菌酰胺对辣椒疫霉的作用机制初探[J].农药学学报,2016,18(2):185-193.HE L,YUAN H Z,TANG J F,et al.Preliminary studies on the action mechanism of the novel fungicide LH-2010A against Phytophthora capsici[J].Chin J Pestic Sci,2016,18(2):185-193.
    [31]汪琨,徐峥,汪倩雯,等.肉桂醛特异性抑制酵母细胞壁合成的作用机理[J].食品与发酵工业,2012,38(3):68-72.WANG K,XU Z,WANG Q W,et al.Mechanism of yeast cell wall synthesis specifically inhibited by cinnamaldehyde[J].Food Ferment Ind,2012,38(3):68-72.
    [32]曾红.莳萝子挥发油抗真菌活性及其作用机制研究[D].武汉:华中农业大学,2011.ZENG H.Antifungal activity and mechanism of essential oil from the seeds of Anethum graveolens L.[D].Wuhan:Huazhong Agricultural University,2011.
    [33]CHEN C,LONG L,ZHANG F,et al.Antifungal activity,main active components and mechanism of Curcuma longa extract against Fusarium graminearum[J].PloS One,2018,13(3):e0194284.
    [34]周智兴.黄岑苷、IgY抗白色念珠菌作用机制研究[D].南昌:南昌大学,2006.ZHOU Z X.Study of action mechanism of baicalin and IgY against Candida albicans[D].Nanchang:Nanchang University,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700