Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection
  • 作者:BoJing ; Zhu ; Hui ; Yan ; David ; A ; Yuen ; YaoLin ; Shi
  • 英文作者:BoJing Zhu;Hui Yan;David A Yuen;YaoLin Shi;Yunnan Observatories, Chinese Academy of Sciences;Center for Astronomical Mega-Science, Chinese Academy of Sciences;National Supercomputer Center in Guangzhou, Sun Yat-sen University;Department of Earth Science and Minnesota Supercomputing Institute, University of Minnesota;Applied Physics and Applied Mathematics Department, Columbia University;Key Laboratory of Computing Geodynamics, Chinese Academy of Sciences;College of Earth and Planetary Sciences, University of Chinese Academy of Sciences;
  • 英文关键词:hybrid particle acceleration mechanism;;large temporal-spatial turbulent magnetic reconnection;;Hydro-Dynamic-Kinetic model
  • 中文刊名:Earth and Planetary Physics
  • 英文刊名:地球与行星物理(英文)
  • 机构:Yunnan Observatories, Chinese Academy of Sciences;Center for Astronomical Mega-Science, Chinese Academy of Sciences;National Supercomputer Center in Guangzhou, Sun Yat-sen University;Department of Earth Science and Minnesota Supercomputing Institute, University of Minnesota;Applied Physics and Applied Mathematics Department, Columbia University;Key Laboratory of Computing Geodynamics, Chinese Academy of Sciences;College of Earth and Planetary Sciences, University of Chinese Academy of Sciences;
  • 出版日期:2019-01-15
  • 出版单位:Earth and Planetary Physics
  • 年:2019
  • 期:01
  • 基金:supported by the strategic priority research program of CAS (XDA17040507, XDA15010900);; the national basic research program of China (2013CBA01503);; the key program of NSFC (11333007);; joint funds of NSFC(U1631130);; frontier science key programs of CAS (QYZDJ-SSWSLH012);; the program for innovation team of Yunnan Province;; the program for Guangdong introducing Innovative and entrepreneurial teams (2016ZT06D211);; the special program for applied research on super computation of the NSFC-Guangdong joint fund (second phase) under No.U1501501
  • 语种:英文;
  • 页:19-27
  • 页数:9
  • CN:10-1502/P
  • ISSN:2096-3955
  • 分类号:P353
摘要
A new combined Fermi, betatron, and turbulent electron acceleration mechanism is proposed in interaction of magnetic islands during turbulent magnetic reconnection evolution in explosive astrophysical phenomena at large temporal-spatial scale(LTSTMR), the ratio of observed current sheets thickness to electron characteristic length, electron Larmor radius for low-β and electron inertial length for high-β, is on the order of 10~(10)–10~(11); the ratio of observed evolution time to electron gyroperiod is on the order of 10~7–10~9).The original combined acceleration model is known to be one of greatest importance in the interaction of magnetic islands; it assumes that the continuous kinetic-dynamic temporal-spatial scale evolution occurs as two separate independent processes.In this paper, we reconsider the combined acceleration mechanism by introducing a kinetic-dynamic-hydro full-coupled model instead of the original micro-kinetic or macro-dynamic model.We investigate different acceleration mechanisms in the vicinity of neutral points in magnetic islands evolution, from the stage of shrink and breakup into smaller islands(kinetic scale), to the stage of coalescence and growth into larger islands(dynamic scale), to the stages of constant and quasi-constant(contracting-expanding) islands(hydro scale).As a result, we give for the first time the acceleration efficiencies of different types of acceleration mechanisms in magnetic islands' interactions in solar atmosphere LTSTMR activities(pico-, 10~(–2)–10~5 m; nano-, 10~5–10~6 m; micro-, 10~6–10~7 m; macro-, 10~7–10~8 m; large-,10~8–10~9 m).
        A new combined Fermi, betatron, and turbulent electron acceleration mechanism is proposed in interaction of magnetic islands during turbulent magnetic reconnection evolution in explosive astrophysical phenomena at large temporal-spatial scale(LTSTMR), the ratio of observed current sheets thickness to electron characteristic length, electron Larmor radius for low-β and electron inertial length for high-β, is on the order of 10~(10)–10~(11); the ratio of observed evolution time to electron gyroperiod is on the order of 10~7–10~9).The original combined acceleration model is known to be one of greatest importance in the interaction of magnetic islands; it assumes that the continuous kinetic-dynamic temporal-spatial scale evolution occurs as two separate independent processes.In this paper, we reconsider the combined acceleration mechanism by introducing a kinetic-dynamic-hydro full-coupled model instead of the original micro-kinetic or macro-dynamic model.We investigate different acceleration mechanisms in the vicinity of neutral points in magnetic islands evolution, from the stage of shrink and breakup into smaller islands(kinetic scale), to the stage of coalescence and growth into larger islands(dynamic scale), to the stages of constant and quasi-constant(contracting-expanding) islands(hydro scale).As a result, we give for the first time the acceleration efficiencies of different types of acceleration mechanisms in magnetic islands' interactions in solar atmosphere LTSTMR activities(pico-, 10~(–2)–10~5 m; nano-, 10~5–10~6 m; micro-, 10~6–10~7 m; macro-, 10~7–10~8 m; large-,10~8–10~9 m).
引文
Ambrosiano,J.,Matthaeus,W.H.,Goldstein,M.L.,Plante,D.(1988).Test particle acceleration in turbulent reconnecting magnetic fields.J.Geophys.Res.,93(A12),14383-14400.https://doi.org/10.1029/JA093iA12p14383
    Bian,N.H.,Kontar,E.P.(2013).Stochastic acceleration by multi-island contraction during turbulent magnetic reconnection.Phys.Rev.Lett.,110(15),151101.https://doi.org/10.1103/PhysRevLett.110.151101
    Biskamp,D.,Welter,H.(1980).Coalescence of Magnetic Islands.Phys.Rev.Lett.,44(16),1069-1072.https://doi.org/10.1103/PhysRevLett.44.1069
    Biskamp,D.(2000).Magnetic Reconnection in Plasmas.New York:Cambridge University Press.
    Brizard,A.J.,Chan,A.A.(1999).Nonlinear relativistic gyrokinetic VlasovMaxwell equations.Phys.Plasmas,6(12),4548-4558.https://doi.org/10.1063/1.873742
    Cassak,P.A.,Drake,J.F.(2013).On phase diagrams of magnetic reconnection.Phys.Plasmas,20(6),061207.https://doi.org/10.1063/1.4811120
    Chen,Y.,Du,G.H.,Zhao,D.,Wu,Z.,Liu,W.,Wang,B.,Ruan,G.P.,Feng,S.W.,Song,H.Q.(2016).Imaging a magnetic-breakout solar eruption.APJL,820(2),L30.https://doi.org/10.3847/2041-8205/820/2/L37
    Comisso,L.,Soroni,L.(2018).Particle acceleration in relativistic plasma turbulence.Phys.Rev.Lett,121,255101.https://doi.org/10.1103/PhysRevLett.121.255101
    Drake,J.F.,Swisdak,M.,Che,H.,Shay,M.A.(2006).Electron acceleration from contracting magnetic islands during reconnection.Nature,443(7111),553-556.https://doi.org/10.1038/nature05116
    Fu,H.S.,Vaivads,A.,Khotyaintsev,Y.V.,André,M.,Gao,J.B.,Olshevsky,V.,Eastwood,J.P.,Retinò,A.(2017).Intermittent energy dissipation by turbulent reconnection.Geophys.Res.Lett.,44(1),37-43.https://doi.org/10.1002/2016GL071787
    Gan,W.Q.,Wang,D.Y.(2016).Solar High-Energy Physics.The Science Publishing Company,317.
    Gou,T.Y.,Liu,R.,Wang,Y.M.,Liu,K.,Zhuang,B.,Chen,J.,Zhang,Q.H.,Liu,J.J.(2016).Stereoscopic observation of slipping reconnection in a double candle-flame-shaped solar flare.APJL,821(2),L28.https://doi.org/10.3847/2041-8205/821/2/L28
    Haines,M.G.(1986).Magnetic-field generation in laser fusion and hot-electron transport.Can.J.Phys.,64(8),912-919.https://doi.org/10.1139/p86-160
    Hoshino,M.(2012).Stochastic particle acceleration in multiple magnetic islands during reconnection.Phys.Rev.Lett.,108(13),135003.https://doi.org/10.1103/PhysRevLett.108.135003
    Ji,H.T.,Daughton,W.(2011).Phase diagram for magnetic reconnection in heliophysical,astrophysical,and laboratory plasmas.Phys.Plasmas,18(11),111207.https://doi.org/10.1063/1.3647505
    Lazarian,A.,Opher,M.(2009).A model of acceleration of anomalous cosmic rays by reconnection in the Heliosheath.Astrophys.J.,703(1),8-21.https://doi.org/10.1088/0004-637X/703/1/8
    Lin,J.,Murphy,N.A.,Shen,C.C.,Raymond,J.C.,Reeves,K.K.,Zhong,J.Y.,Wu,N.,Li,Y.(2015).Review on current sheets in CME development:theories and observations.Space Sci.Rev.,194(1-4),237-302.https://doi.org/10.1007/s11214-015-0209-0
    Liu,Y.H.,Hesse,M.,Guo,F.,Daughton,W.,Li,H.,Cassak,P.A.,Shay,M.A.(2017).Why does steady-state magnetic reconnection have a maximum local rate of order 0.1?.Phys.Rev.Lett.,118(8),085101.https://doi.org/10.1103/PhysRevLett.118.085101
    Mendoza,M.,Boghosian,B.M.,Herrmann,H.J.,Succi,S.(2010).Fast lattice Boltzmann solver for relativistic hydrodynamics.Phys.Rev.Lett.,105(1),014502.https://doi.org/10.1103/PhysRevLett.105.014502
    Li,Y.,Lin,J.(2012).Acceleration of electrons and protons in reconnecting current sheets including single or multiple x-points.Sol.Phys.,279(1),91-113.https://doi.org/10.1007/s11207-012-9956-1
    Oka,M.,Phan,T.D.,Krucker,S.,Fujimoto,M.,Shinohara,I.(2010).Electron acceleration by multi-island coalescence.Astrophys.J.,714(1),915-926.https://doi.org/10.1088/0004-637X/714/1/915
    Raymond,J.C.,Krucker,S.,Lin,R.P.,Petrosian,V.(2012).Observational Aspects of Particle Acceleration in Large Solar Flares.Space Sci.Rev.,173(1-4),197-221.https://doi.org/10.1007/s11214-012-9897-x
    Petrosian,V.(2012).Stochastic acceleration by turbulence.Space Sci.Rev.,173(1-4),535-556.https://doi.org/10.1007/s11214-012-9900-6
    Shi,Q.Q.,Zong,Q.G.,Fu,S.Y.,Dunlop,M.W.,Pu,Z.Y.,Parks,G.K.,Wei,Y.,Li,W.H.,Zhang,H.,…Lucek,E.(2013).Solar wind entry into the high-latitude terrestrial magnetosphere during geomagnetically quiet times.Nat.Commun.,4,1466.https://doi.org/10.1038/ncomms2476
    Song,H.Q.,Chen,Y.,Li,G.,Kong,X.L.,Feng,S.W.(2012).Coalescence of macroscopic magnetic islands and electron acceleration from STEREOobservation.Phys.Rev.X,2(2),021015.https://doi.org/10.1103/PhysRevX.2.021015
    Walker,D.N.,Bowles,J.H.,Amatucci,W.E.,Holland,D.L.,Chen J.(2004).The Harris magnetic field:A laboratory realization of the topology based on energy resonance.J.Geophys.Res.,109(A6),A06205.
    Wang,H.Y.,Lu,Q.M.,Hang,C.,Wang,S.(2016).The mechanisms of electron acceleration during multiple X line magnetic reconnection with a guide field.Astrophys.J.,821(2),84.https://doi.org/10.3847/0004-637X/821/2/84
    Wang,H.Y.,Lu,Q.M.,Huang,C.,Wang,S.(2017).Electron acceleration in a secondary magnetic island formed during magnetic reconnection with a guide field.Phys.Plasmas,24(5),052113.https://doi.org/10.1063/1.4982813
    Wang,R.S.,Lu,Q.M.,Nakamura,R.,Huang,C.,Du,A.M.,Guo,F.,Teh,W.,Wu,M.Y.,Lu,S.,Wang,S.(2016).Coalescence of magnetic flux ropes in the ion diffusion region of magnetic reconnection.Nat.Phys.,12(3),263-267.https://doi.org/10.1038/nphys3578
    Wang,R.S.,Nakamura,R.,Lu,Q,M.,Baumjohann,W.,Ergun,R.E.,Burch,J.L.,Volwerk,M.,Varsani,A.,Nakamura,T.,…Wang,S.(2017).Electron-scale quadrants of the hall magnetic field observed by the magnetospheric multiscale spacecraft during asymmetric reconnection.Phys.Rev.Lett.,118(17),175101.https://doi.org/10.1103/PhysRevLett.118.175101
    Yi,S.M.,Jhang,H.,Kwon,J.M.(2016).Gyrokinetic simulations of an electron temperature gradient turbulence driven current in tokamak plasmas.Phys.Plasmas,23(10),102514.https://doi.org/10.1063/1.4966206
    Zhong,J.Y.,Lin,J.,Li,Y.T.,Wang,X.,Li,Y.,Zhang,K.,Yuan,D.W.,Ping,Y.L.,Wei,H.G.,…Zhang,J.(2016).Relativistic electrons produced by reconnecting electric fields in a laser-driven bench-top solar flare.Astrophys.J.Suppl.Ser.,225(2),30.https://doi.org/10.3847/0067-0049/225/2/30
    Zong,Q.G.,Fritz,T.A.,Pu,Z.Y.,Fu,S.Y.,Baker,D.N.,Zhang,H.,Liu,A.T.,Vogiatzis,I.,Glassmeier,K.H.,…Reme,H.(2004).Cluster observations of earthward flowing plasmoid in the tail.Geophys.Res.Lett.,31(18),L18803.https://doi.org/10.1029/2004GL020692

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700