砂砾土液化判别的基本方法及计算公式
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
2008年汶川8.0级大地震中液化现象显著且砂砾土液化占很大比重,而我国一些地区砂砾土分布广泛,发展相应液化预测和判别方法十分必要。我国规范液化判别方法来源于砂层(细粒土)液化资料,且按规范规定标准贯入试验不适于砂砾场地,故现有规范中基于标贯的液化判别方法对砂砾土不可行。以汶川大地震液化震害调查和现场测试为基础,提出了基于超重型动力触探试验(动探试验)的砂砾土液化判别方法并建立了计算模型和公式。结果表明:砂砾土液化判别由初判和复判两部分组成,初判以排除不可能液化及可不考虑液化影响情况为目标,复判则可采用动探击数N120为基本指标的计算模型。初判包括地质年代、埋藏条件和含砾量3个条件,复判模型则由动探击数基准值、含砾量、砂砾土埋深、地下水深度和地震烈度等5个参数组成。根据此次地震液化砂砾土埋深及地下水位变化范围较大的特点,采用归一化方法导出动探击数基准值,利用优化方法推导出砂砾土深度及地下水位的影响系数。提出的砂砾土液化判别方法,较全面地考虑了砂砾土液化的影响因素,复判模型和公式表达简单明了,回判成功率较高,且与现有规范具有连续性,便于工程应用。
The liquefaction behaviors in the great Wenchuan 8.0 Earthquake in 2008 are quite notable,and the liquefaction of gravel soil is significant.Considering the wide distribution of gravel soil in some places in China,the liquefaction prediction methods should be developed.The existing methods for evaluating the liquefaction of sand soil result from the sand liquefaction cases,however,SPT technique can not be conducted in the gravel soil layers,and as a result,the existing code is not suitable for the liquefaction assessment of gravel soil.After the investigation for the liquefaction-induced damages in the great Wenchuan Earthquake and in-situ tests for the liquefied and non-liquefied sites,the liquefaction prediction method of gravel soil based on DPT,i.e.,the dynamic penetration tests,is presented,and the corresponding model and formula are obtained.The analytical results indicate the liquefaction discrimination of the gravel soil can be divided into two steps,the initial discrimination and the second discrimination.In the initial step,the impossible liquefaction cases are selected,and in the second,the calculation model is adopted by using N120 as the basic index from DPT.The geological ages,buried condition of the gravel soil layer and gravel contents of gravel soils are considered in the initial discrimination.In the second discrimination,five parameters including the reference value of N120,gravel content of gravel soils,depth of gravel soils,water table and seismic intensity are concerned.Considering the wide range of liquefied soil depths and its water levels,the reference value of N120 is deduced by the normalization method and the influence coefficients of the gravel soil depths and the water levels are obtained by the optimal method.The effect of various factors on liquefaction possibility of gravel soil is considered in the present method and the advantages of the model and formula for the second discrimination are noticed by clear expression,high success ratio of regression discrimination,good connection with the past work and convenience in engineering application.
引文
[1]刘恢先.唐山大地震震害[M].北京:地震出版社,1989.(LIU Hui-xian.The Great Tangshan Earthquake of 1976[M].Beijing:Seismic Press,1989.(in Chinese))
    [2]SEED R B,CETIN K O,et al.Recent advances in soilliquefaction engineering,a unified and consistent framework[R].EERC,USA:Earthquake EngineeringResearch Center,2003.
    [3]Brady Ray Cox M S.Development of a direct test method fordynamically assessing the liquefaction resistance of soils insitu[D].The University of Texas at Austin,2006.
    [4]中华人民共和国国家标准编写组.GB50011—2001建筑抗震设计规范[S].北京:中国建筑工业出版社,2001.(TheNational Standards Compilation Group of People′s Republicof China.GB0011—2001 Code for seismic design ofbuildings[S].Beijing:China Architecture and Building Press,2001.(in Chinese))
    [5]袁晓铭,曹振中,孙锐,等.汶川8.0级地震液化特征初步研究[J].岩石力学与工程学报,2009,28(6):1288-1296.(YUAN Xiao-ming,CAO Zhen-zhong,SUN Rui,et al.Preliminary research on liquefaction characteristics ofWenchuan 8.0 Earthquake[J].Chinese Journal of RockMechanics and Engineering,2009,28(6):1288-1296.(inChinese))
    [6]何银武.论成都盆地的成生时代及其早期沉积物的一般特征[J].地质论评,1992,38(2):149-156.(HE Yin-wu.Theage of formation of Chengdu Basin and features of its earlydeposits[J].Geological Review,1992,38(2):149-156.(inChinese))
    [7]刘惠珊.砾石的液化判别探讨[C]//第五届全国地震工程学术会议论文.北京,1998:183-188.(LIU Hei-shan.Discussion on liquefaction prediction of gravel soils[C]//Proc the 5th national Conference on Earthquake Engineering.Beijing,1998:183-188.(in Chinese))
    [8]YOUD T L,IDRISS I M.Liquefaction resistance of soils:summary report from the 1996 nceer and 1998 nceer/nsfworkshops on evaluation of liquefaction resistance of soils[J].Journal of Geotechnical and Geoenvironment Engineering,2001,127(4):297-313.
    [9]中华人民共和国建设部.GB50021—94岩土工程勘察规范[S].北京:中国建筑工业出版社,1994.(The ConstructionMinistry of People′s Republic of China.GB0011—2001Code for investigation of geotechnical engineering[S].Beijing:China Architecture and Building Press,1994.(inChinese))
    [10]SYKORA D.W.Creation of a data base of seismic shearwave velocities for correlation analysis[R].Geotech LabMisc Paper 1987,GL-87-26,U.S.Army Engr WaterwaysExperiment Station,Vicksburg,Miss.
    [11]石兆吉,郁寿松,丰万玲.土壤液化式的剪切波速判别方法[J].岩土工程学报,1993,15(1):74-80.(SHI Zhao-ji,YU Shou-song,FENG Wan-ling.Shear wave velocity basedSoil liquefaction evaluation[J].Chinese Journal ofGeotechnical Engineering,1993,15(1):74-80.(inChinese))
    [12]王昆耀,常亚屏,陈宁.饱和砂砾料液化特性的试验研究[J].水利学报,2000(2):37-41.(WANG Kun-yao,CHANG Ya-ping,CHEN Ning.Experimental study onliquefaction characteristics of saturated sandy gravel[J].Chinese Journal of Hydraulic Engineering,2000(2):37-41.(in Chinese))
    [13]EVANS MARK D,ZHOU Sheng-ping.Liquefactionbehavior of sand-gravel composites[J].Journal ofGeotechnical Engineering,1995,121(3):287-298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700