川西盐井沟断层传播褶皱的三维构造建模与磁组构分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
当前断层相关褶皱研究的发展方向是从二维向三维的转换。文中基于Arcgis、Discovery以及Gocad等三维软件平台,对川西盐井沟地区地震资料进行精细的解析,得出盐井沟背斜是一个典型的三剪断层传播褶皱,并建立了它的三维模型。同时考虑到单纯符合几何约束的构造解释普遍存在着多解性和不确定性,结合几何学的三维建模和动力学的有限应变分析研究断层相关褶皱。在川西盐井沟地区18个采样点钻取了184块定向岩心样品,通过磁组构的分析结果发现,盐井沟地区的磁组构基本上都是弱应变的初始变形组构,褶皱前翼应变强度比后翼略强。断层传播褶皱三剪带是有限应变最为集中的区域,在模型预测的三剪带内,磁组构反映的有限应变也较为强烈。磁组构所指示的构造应力场大致为NW-SE向挤压缩短,与断层相关褶皱的几何学与运动学模型的预测相一致。
Recently, there is a transition trend of the research on the fault-related fold from 2D to 3D. Based on ARCGIS,DISCOVERY and GOCAD software platform,we built a 3D geological model of the Yanjinggou anticline using 3D seismic data in the area. It was found that Yanjinggou anticline was a typical trishear fault-propagation fold. Because the structural interpretation of the 3D model only is of non-uniqueness and uncertainty due to geometric constraint, the finite strain analysis was also applied in the structural interpretation.184 oriented samples have been drilled at 18 sampling sites in Yanjinggou, western Sichuan. AMS of these samples disclosed:(1) that most of the magnetic fabrics were the initial deformation fabric; (2) that deformation in the forelimb was relatively stronger than that in the rearlimb, and (3) that the finite strain was strong within the trishear zone of the fault-propagation fold, in accordance with demonstration in the 3D geometric model. The tectonic stress field indicated by the magnetic fabrics suggested a NW-SE compression and shortening, which was consistent with the prediction of the 3D geometric model.
引文
[1]Wilkerson MS,Fischer MP,Apotria T,et al.Fault-related folds:The Transition from2-Dto3-D[J].Journal of Struc-tural Geology,2002,24:591-592.
    [2]Fischer MP,Wilkerson M S.Predicting the orientation of joints from fold shape:results of pseudo-three-di mensional modeling and curvature analysis[J].Geology,2000,28(1):15-18.
    [3]Cooper K,Hardy S.The interaction between fault-related folding and sedi mentation in3D[J].Thrust Tectonics Con-ference,Royal Holloway,University of London.Abstract,1999:156.
    [4]Suppe J,Medwedeff D A.Geometry and kinematics of fault-propagation folding[J].Eclog Geol Helv,1990:83(Laub-scher vol.):409-454.
    [5]Cristallinia E O,All mendinger R W.Pseudo3-D modeling of trishear fault-propagation folding[J].Jourmal of Structural Geology,2001,23:1-2.
    [6]Tavani S,Storti F,Salvini F.Rounding hinges to fault-bend folding:geometric and kinematic i mplications[J].Journal of Structural Geology,2005,27:3-22.
    [7]Ramsay J G,Huber MI.The techniques of modern structur-al geology,volume2:folds andfractures[M].London:Aca-demic Press,1987.
    [8]Hardy S.A method for quantifying the kinematics of fault-bend folding[J].Journal of Structural Geology,1995,17(12):1785-1788.
    [9]Hardy S,Ford M.Numerical modeling of trishear fault prop-agation folding[J].Tectonics,1997,16(5):841-854.
    [10]Erslev E A,Mayborn K R.Multiple geometries and models of fault-propagation folding in the Canadian thrust belt[J].Journal of Structural Geology,1997,19:321-335.
    [11]Salvini F,Storti F.The distribution of deformationin paral-lel fault related folds with migrating axial surfaces:compari-son between fault propagation and fault-bend folding[J].Journal of Structural Geology,2001,23:25-32.
    [12]Chen B.Study onthe chronogenesis relation of mineralization and deformation by magnetic fabric analysis[J].Geological Journal of China Universities,1999,5(3):269(in Chinese).
    [13]Lu H,Dong H,Deng X,et al.Types and origins of the thrusts and nappes in outer Longmenshan foreland basin[J].Journal of Nanjing University:Earth Sciences,1989,4:32-41(in Chinese).
    [14]Luo Z.The dynamical model of the lithospheric evolution in Longmen Shan orogenic belt[J].Journal of Chengdu College of Geology,1991,18(1):1-7(in Chinese).
    [15]Xu Z,Hou L,Wang Z,et al.Orogenic processes of the Songpan-Garz毢orogenic belt of China[J].Beijing:Geolog-ical Publishing House,1992:190(in Chinese).
    [16]Jia D,Wei G,Chen Z,et al.Longmen Shan fold-thrust belt and its relation to western Sichuan Basin in central China:newinsights fromhydrocarbon exploration[J].AAPG Bulle-tin,2006,90:1-23.
    [17]Chen Z,Jia D,Zhang Q,et al.Balanced cross-section analy-sis of the fold-thrust belt of the Longmen Mountains[J].Ac-ta Geologica Sinica,2005,79(1):38-45(in Chinese).
    [18]Jia Q,Jia D,Zhu A,et al.Active tectonics in the Lonemen-shan thrust belt to the eastern Qinghai-Tibetan Plateau and Sichuan Basin:evidence fromtopography and seismicity[J].Chinese Journal of Geology,2007,42(1):31-44(in Chi-nese).
    [19]Ramsay J G,Huber MI.The techniques of modern structur-al geology,Volume1,Strain analysis[M].London:Aca-demic Press,1983.
    [20]Zhu D.A newstress orientation research method:magnetic fabric[J].Fault-block Oil&Gas Field,2002,9(1):2(in Chinese).
    [21]Aubourg C,de Lamotte D F,Poisson A,et al.Magnetic fab-rics and oblique ramp-related folding:a case study fromthe western Taurus(Turkey)[J].J Struct Geol,1997,19(8):1111-1120.
    [22]Averbuch O,de Lamotte D F,Kissel C.Magnetic fabric as a structural Indicator of the deformation path within a fold thrust structure:a test case fromthe Corbières(NE Pyre-ness,France)[J].J Struct Geol,1992,14:461-474.
    [23]Jia D,Chen Z,Luo L,et al.Magnetic fabricsinfault-related fold andits relation with finite strain:an example from Min-jiang thrust structures in Western Sichuan[J].Progress in Natural Science,2007,17(1):31-38(in Chinese).
    [24]Hirt A M,Evans K F,Engelder T.Correlation between magnetic anisotropy andfabric for Devonian shales onthe Ap-palachian plateau[J].Tectonophysics,1995,247:121-132.
    [25]Hu Q,Jia D,Chen Z,et al.Characteristics of magnetic fab-rics of Feixianguan fault-propagation fold in the front of Longmenshan fold-thrust belt and its structural significance[J].Geological Journal of China Universities,2005,11(4):649-655(in Chinese).
    [26]Luo L,Jia D,Chen Z,et al.Magnetic fabric evolution in northwestern Sichuan Basin and its strain characteristics[J].Geological Bulletin of China,2006,25(11):1342-1348(in Chinese).
    [27]Van der Pluij m B A,Ho N C,Peacor D,et al.Contradic-tions of slate formation resolved[J]?Nature,1998,392:348.
    [28]Rathore J S.Magnetic susceptibility anisotropy in the Cam-brian slate belt of North Wales and correlation with strain[J].Tectonophysics,1979,53:83-97.
    [29]Housen B A,Van der Pluij m B A.Slaty cleavage develop-ment and magnetic anisotropy fabric[J].J Geophys Res,1991,96:9937-9946.
    [30]Hrouda F.Magnetic anisotropy of rocks andits applicationin geology and geophysics[J].Geophysical Surveys,1982,5:37-82.
    [31]Rochette P,Jackson M,Aubourg C.Rock magnetism and the interpretation of anisotropy of magnetic susceptibility[J].Reviews of Geophysics,1992,30:209-226.
    [32]Borradaile G J,Henry B.Tectonic applications of magnetic susceptibility and its anisotropy[J].Earth Science Reviews,1997,42:49-93.
    [33]Jelinek V.Characterization of the magnetic fabric of the rocks[J].Tectonophysics,1981,79:63-67.
    [12]陈柏林.应用磁组构方法研究构造变形与成矿作用的时序关系[J].高校地质学报,1999,5(3):269.
    [13]卢华复,董火根,邓锡秧,等.前龙门山前陆盆地推覆构造的类型和成因[J].南京大学学报:地球科学版,1989,4:32-41.
    [14]罗立志.龙门山造山带岩石圈演化的动力学模式[J].成都地质学院学报,1991,18(1):1-7.
    [15]许志琴,侯立玮,王宗秀.中国松潘—甘孜造山带的造山过程[M].北京:地质出版社,1992:73-86.
    [17]陈竹新,贾东,张惬,等.龙门山前陆褶皱冲断带的平衡剖面分析[J].地质学报,2005,79(1):38-45.
    [18]贾秋鹏,贾东,朱艾斓,等.青藏高原东缘龙门山冲断带与四川盆地的现今构造表现:数字地形和地震活动证据[J].地质科学,2007,42(1):31-44.
    [20]朱德武.地应力方向研究新方法——磁组构法[J].断块油气田,2002,9(1):2.
    [23]贾东,陈竹新,罗良,等.断层相关褶皱的磁组构与有限应变:川西岷江冲断构造的实例分析[J].自然科学进展,2007,17(1):31-38.
    [25]胡潜伟,贾东,陈竹新,等.龙门山飞仙关断层传播褶皱磁组构特征及构造意义[J].高校地质学报,2005,11(4):649-655.
    [26]罗良,贾东,陈竹新,等.川西北磁组构演化及其揭示的应变特征[J].地质通报,2006,25(11):1342-1348.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700