巢湖烔炀河水质空间分布特征及其改善策略
详细信息   下载全文 | 推荐本文 |
摘要
研究巢湖入湖河流烔炀河营养物质(N、P)和化学需氧量(CODCr)的空间分布特征,采用基于主成分分析(PCA)构造的多指标综合评价体系表征了河流水质空间变化趋势。烔炀河各段水质受到流域人类活动和河流自净功能的双重影响。上游烔河段污染最重,其F因子均值为1.03(范围0.05~1.64),主要是由烔炀镇生活污水排放、沿河固体废弃物堆积、农业面源污染等人类活动所致。炀河段水质相对较好,其F因子均值为-0.03(范围-0.08~0.04)。烔河、炀河汇合后的烔炀河段水质自上游至下游总体上呈现先变差、后变好的趋势,其F因子均值为-0.30(范围-0.66~0.28),沿途农业面源污染对河水水质产生了显著影响。采用PCA分析对河流各项水质因子载荷大小比较后得出N、P是烔炀河水质的主控因子,第一主成分氮磷营养因子解释了河流水质空间变异的约60%。提出了烔炀河水质改善策略,为烔炀河生态型小流域规划与建设提供可行方案,为巢湖水环境治理决策提供科学依据。
        This article reported the spatial distribution characteristics of major nutrients(N, P) and chemical oxygen demand(CODCr) in Tongyang River flowing into Chaohu Lake. We adopted a comprehensive evaluation system based on principal component analysis(PCA) of multiple indices to characterize the spatial variation trend of river water quality. The water quality of three sections of Tongyang River was influenced by both human activities in the river basin and the riverine self-purification function. The upper stream of Tonghe section suffered the heaviest pollution with an average F factor of 1.03(ranging from 0.05 to 1.64), which was mainly caused by the decentralized domestic sewage discharge, cluttered wastes and litters along both sides of streams, and agricultural nonpoint source pollution. Yanghe section had relatively good water quality with an average F factor of ?0.03(ranging from ?0.08 to 0.04). Water quality in Tongyang section where Tonghe and Yanghe sections joined together showed a trend of overall improvement from upstream to downstream with an average F factor of ?0.30(ranging from ?0.66 to 0.28). Agricultural nonpoint source pollutions along the river play a major role in worsening the water quality in Tongyang section. PCA analysis used to compare the loading of water quality indices indicated that N and P were the key controlling factors. The first principal component named as nitrogen and phosphorus nutrients factor explained about 60% of the spatial variation of river water quality. The strategy for water quality improvement of Tongyang River was proposed, which can become the scientific and practical foundation for constructing an ecological Tongyang River basin. This research provides a framework for making management decisions on water environment protection of Chaohu Lake.
引文
[1]Rast W,Holland M.Eutrophication of lakes and reservoirs:a framework for making management decisions[J].Ambio,1988,17(1):2-12.
    [2]Smith V H.Eutrophication of freshwater and coastal marine ecosystems a global problem[J].Environmental Science and Pollution Research,2003,10(2):126-139.
    [3]Pei H P,Wang Y.Eutrophication research of West Lake,Hangzhou,China:modeling under uncertainty[J].Water Research,2003,37(2):416-428.
    [4]Guo L.Doing battle with the green monster of Taihu Lake[J].Science,2007,317(5842):1166.
    [5]Jin X C,Xu Q J,Huang C Z.Current status and future tendency of lake eutrophication in China[J].Science in China Series C:Life Sciences,2005,48(2):948-954.
    [6]Marsden M W.Lake restoration by reducing external phosphorus loading:the influence of sediment phosphorus release[J].Freshwater Biology,1989,21(2):139-162.
    [7]Johnes P J.Evaluation and management of the impact of land use change on the nitrogen and phosphorus load delivered to surface waters:the export coefficient modelling approach[J].Journal of Hydrology,1996,183(3/4):323-349.
    [8]Dodds W K.Eutrophication and trophic state in rivers and streams[J].Limnology and Oceanography,2006,51(1):671-680.
    [9]Peterson B J,Wollheim W M,Mulholland P J,et al.Control of nitrogen export from watersheds by headwater streams[J].Science,2001,86(5514):86-90.
    [10]安徽省规划编制领导小组.巢湖流域综合防治规划(2001-2015)[R].2001.
    [11]逄勇,颜润润,李一平,等.内外源共同作用对太湖营养盐贡献量研究[J].水利学报,2008,39(9):1051-1059.
    [12]王书航,姜霞,金相灿,等.巢湖入湖河流分类及污染特征分析[J].环境科学,2011,32(10):2834-2839.
    [13]殷福才,张之源.巢湖富营养化研究进展[J].湖泊科学,2003,15(4):377-384.
    [14]Jiang Y J,He W,Liu W X,et al.The seasonal and spatial variations of phytoplankton community and their correlation with environmental factors in a large eutrophic Chinese lake(Lake Chaohu)[J].Ecological Indicators,2014,40:58-67.
    [15]Shang G P,Shang J C.Causes and control countermeasures of eutrophication in Chaohu Lake,China[J].Chinese Geographical Science,2005,15(4):348-354.
    [16]范成新,汪家权,羊向东,等.巢湖磷本底影响及其控制[M].北京:中国环境科学出版社,2012:1-17.
    [17]屠清瑛,顾丁锡,尹澄清,等.巢湖富营养化研究[M].合肥:中国科学技术大学出版社,1990.
    [18]孙爱华,陈玺,曹秀云.巢湖富磷地质区沉积物磷的生物可利用性[J].水生态学杂志,2012,33(4):26-31.
    [19]廖荣明,洪天求,李如忠.巢湖烔炀河水体氮磷营养物变化特征及成因分析[J].合肥工业大学学报:自然科学版,2010,33(10):1553-1557.
    [20]管佳佳,洪天求,贾志海,等.巢湖烔炀河水质评价及主成分分析[J].安徽建筑工业学院学报:自然科学版,2008,16(3):89-93.
    [21]水和废水监测分析方法编委会.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
    [22]Friendly M.SAS system for statistical graphics[M].SAS Institute Inc,Cary,NC,USA,1991.
    [23]Friendly M.Visualizing categorical data[M].SAS Institute Inc,Cary,NC,USA,2000.
    [24]唐启义.DPS数据处理系统——实验设计、统计分析及数据挖掘M].2版.北京:科学出版社,2010.
    [25]Klausmeier C A,Litchman E,Daufresne T,et al.Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton[J].Nature,2004,429(6988):171-174.
    [26]Redfield A C.The biological control of chemical factors in the environment[J].American Scientist,1958,46(3):205-222.
    [27]李哲,郭劲松,方芳,等.三峡水库小江回水区不同TN/TP水平下氮素形态分布和循环特点[J].湖泊科学,2009,21(4):509-517.
    [28]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报,2005,25(3):589-595.
    [29]吴朝.巢湖西半湖富营养化影响因子定量分析[D].合肥:安徽农业大学,2009:17-22.
    [30]祁洪全.综合评价的多元统计分析方法[D].长沙:湖南大学,2001:25-38.
    [31]唐燕琼.SAS统计分析教程[M].北京:中国农业出版社,2006:249-260.
    [32]范文宏.运用主成分分析法评价北京市代表河流的水质与毒性状况[J].生态毒理学报,2007,1(2):69-76.
    [33]伊元荣,海米提·伊米提,王涛,等.主成分分析在城市河流水质评价中的应用[J].干旱区研究,2008,25(4):497-501.
    [34]Gopal B,Goel U.Competition and allelopathy in aquaticplant communities[J].Botany Review,1993,59(3):155-210.
目录

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700