灵石山米槠林优势树种叶片δ~(13)C沿海拔梯度的变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Variation in Foliar δ~(13)C of Dominant Species in Castanopsis carlesii Forests Along Elevation Gradients in Lingshishan National Forest Park
  • 作者:王英姿
  • 英文作者:WANG Yingzi;Fuzhou Municipal Bureau of Forestry;
  • 关键词:优势树种 ; 稳定性碳同位素 ; 海拔梯度 ; 米槠林 ; 灵石山
  • 英文关键词:dominant species;;stable carbon isotope;;elevation gradients;;Castanopsis carlesii forests;;Lingshishan
  • 中文刊名:HNXB
  • 英文刊名:Journal of Nuclear Agricultural Sciences
  • 机构:福州市林业局;
  • 出版日期:2016-11-27
  • 出版单位:核农学报
  • 年:2016
  • 期:v.30
  • 基金:国家自然科学基金项目(30671664)
  • 语种:中文;
  • 页:HNXB201611018
  • 页数:6
  • CN:11
  • ISSN:11-2265/S
  • 分类号:144-149
摘要
为探究灵石山米槠林优势树种叶片δ13C值沿海拔梯度的变化规律,以灵石山不同海拔(157~842m,分9个海拔梯度,分别记为A1~A9)米槠林优势树种不同年龄叶片为试材,采用单因素方差分析检验各海拔梯度优势树种叶片δ13C值种间以及所有优势树种叶龄间的差异,回归分析方法探究主要优势树种叶片δ13C值沿海拔梯度的变化关系。结果表明,灵石山不同海拔米槠林优势树种的叶片δ13C平均值为-30.89‰(-34.40‰~-28.81‰);除海拔A7(632~662 m)和海拔A8(762 m)优势树种叶片δ13C值种间差异不显著外,其他海拔梯度上种间叶片δ13C值均差异显著;各海拔不同叶龄叶片的δ13C值差异不显著。在海拔A1~A9上,随海拔升高灵石山米槠林优势树种叶片δ13C值逐渐升高,平均变化量为3.2‰·km-1。随海拔变化,主要优势树种叶片δ13C值变化规律不同,说明优势树种对环境因子变化的敏感性不同,其适应策略也不同。本研究结果为米槠林优势树种对环境变化响应策略的研究提供了理论依据。
        To explore variation of un-enven aged foliar δ13C value of dominant species in Castanopsis carlesii forests along elevation gradients in Lingshishan National Forest Park,foliar δ13C characteristics and changes along elevation gradients were analyzed. The difference of δ13C value in species and un-enven aged leaves of dominant species was analyzed respectively with one-way ANOVA,respectively. And the changes along elevation gradients of δ13C value was analyzed with regression analysis. Significant difference of foliar δ13C value among different species were observed at each elevation gradient except from 632 to 662 and 762 meters,while no significant difference of foliar δ13C value was found among the uneven-aged leaves. With increase of elevation gradients,foliar δ13C value significantly increased,with an increment of 3. 2‰ per 1 000 meters altitude. The responses of principal dominant species foliar δ13C to elevation were different. Elevation affected the growth strategy of dominant species in C. carlessi forests in Lingshishan. Changes of foliar δ13C value along elevation gradients were different for dominant species,indicating the different sensitivity to enviorenment and adaptive strategy. This paper provides theoretical basis for study on response strategy to environment change.
引文
[1]何春霞,李吉跃,孟平,张燕香.树木叶片稳定碳同位素分馏对环境梯度的响应[J].生态学报,2010,30(14):3828-3838
    [2]郑淑霞,上官周平.陆生植物稳定碳同位素组成与全球变化[J].应用生态学报,2006,17(4):733-39
    [3]林光辉.稳定同位素生态学:先进技术推动的生态学新分支[J].植物生态学报,2010,34(2):119-122
    [4]冯秋红,程瑞梅,史作民,刘世荣,刘兴良,何飞,曹慧明.海拔梯度对巴郎山奇花柳叶片δ13C的影响[J].应用生态学报,2011,22(11):2841-2848
    [5]冯秋红,程瑞梅,史作民,刘世荣,刘兴良,何飞,曹慧明.巴郎山刺叶高山栎叶片δ13C对海拔高度的响应[J].生态学报,2011,31(13):3629-3637
    [6]李善家,张有福,陈拓.西北油松叶片δ13C特征与环境因子和叶片矿质元素的关系[J].植物生态学报,2011,35(6):596-604
    [7]林玲,陈立同,郑伟列.西藏急尖长苞冷杉与川滇高山栎叶片δ13C沿海拔梯度的变化[J].冰川冻土,2008,30(6):1048-1054
    [8]张鹏,王刚,张涛,陈年来.祁连山两种优势乔木叶片δ13C的海拔响应及其机理[J].植物生态学报,2010,34(2):125-133
    [9]高三平,李俊祥,徐明策,陈熙,戴洁.天童常绿阔叶林不同演替阶段常见种叶片N、P化学计量学特征[J].生态学报,2007,27(3):947-952
    [10]Song M H,Duan D Y,Chen H,Hu Q W,Zhang F,Xu X L,Tian Y Q,Ouyang H,Peng C H.Leafδ13C reflects ecosystem patterns and responses of alpine plants to the environments on the Tibetan Plateau[J].Ecography,2008,31(4):499-508
    [11]刘小宁,马剑英,孙伟,崔永琴,段争虎.高山植物稳定碳同位素沿海拔梯度响应机制的研究进展[J].山地学报,2010,28(1):37-46
    [12]闫淑君,洪伟,吴承祯,毕晓丽,蓝斌.武夷山天然米槠林优势种群结构与分布格局[J].热带与亚热带植物学报,2002,10(1):15-21
    [13]王新功,洪伟,吴承祯,闫淑君,蓝斌.武夷山米槠林优势种种间联结性研究[J].中国农业生态学报,2003,11(3):25-28
    [14]王英姿.灵石山不同海拔米槠林优势种叶片δ13C值与叶属性因子的相关性[J].生态学报,2013,33(10):3129-3137
    [15]Wang Y Z,Hong W,Wu C Z,Lin H,Fan H L,Chen C,Li J.Research on the variation of uneven-aged leaf SPAD values and the correlation between SPAD and chlorophyll,nitrogen concentration of dominant species in Castanopsis carlessii forsests in Lingshihan National Forest Park[J].Journal of Forestry Research,2009,20(4):362~366
    [16]王英姿,洪伟,吴承祯,郑关关,范海兰,陈灿,李键.灵石山米槠林优势种群不同年龄叶片叶绿体色素沿海拔梯度的变化分析[J].林业科学,2010,46(11):43-51
    [17]Cornelissen J H C,Lavorel S,Garnier E,Díaz S,Buchmann N,Gurvich D E,Reich P B,Steege H,Morgan H D,Heijden M G A,Pausas J G,Poorter H.A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J].Australian Journal of Botany,2003,51(4):335-380
    [18]Reich P B,Uhl C,Walters M B,Prugh L,Ellsworth D S.Leaf demography and phenology in Amazonian rain forest:A census of40,000 leaves of 23 tree species[J].Ecological Monographs,2004,74(1):3-23
    [19]于晓燕,池丽娟,毛艳玲.应用脉冲标记法对杉木富集13C技术的初步研究[J].核农学报,2014,28(8):1473-1477
    [20]任书杰,于贵瑞.中国区域478种C3植物叶片碳稳定性同位素组成与水分利用效率[J].植物生态学报,2011,35(2):119-124
    [21]严昌荣,陈灵芝,沈做奎.中国暖温带落叶阔叶林中某些树种的13C自然丰度:δ13C值及其生态学意义[J].生态学报,2002,22(12):2163-2166
    [22]刘光琇,陈拓,安黎哲,王勋陵,冯虎元.青藏高原北部植物叶片碳同位素组成特征的环境意义[J].地球科学进展,2004,19(5):749-753
    [23]Ares A,Fownes J H.Productivity,nutrient and water-use efficiency of Eucalyptus saligna and Toona ciliata in Hawaii[J].Forest Ecology and Management,2000,139(1/2/3):227-236
    [24]陈拓,陈发虎,安黎哲,刘晓宏.不同海拔祁连园柏树轮和叶片δ13C值的变化[J].冰川冻土,2004,26(6):767-771
    [25]曹生奎,冯起,司建华,常宗强,卓玛错,席海洋,苏永红.植物叶片水分利用效率研究综述[J].生态学报,2009,29(7):3882-3892
    [26]王云霓,熊伟,王彦辉,程积民,于澎涛,徐丽宏,何聪,郝佳,李振华,张晓蓓.六盘山主要树种叶片稳定性碳同位素组成的时空变化特征[J].水土保持研究,2012,19(3):42-47
    [27]马晔,刘锦春.δ13C在植物生态学研究中的应用[J].西北植物学报,2013,33(7):1492-1500
    [28]Warren C R,McG rath J F,Adams M A.Water availability and carbon isotope discrimination in conifers[J].Oecologia,2001,l27(4):476-486

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700