基于稳定碳同位素技术研究大气CO_2浓度升高对植物-土壤系统碳循环的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation on effects of elevated atmospheric CO_2 concentration on plant-soil system carbon cycling:Based on stable isotopic technique
  • 作者:张蕊 ; 赵钰 ; 何红波 ; 张旭东
  • 英文作者:ZHANG Rui;ZHAO Yu;HE Hong-bo;ZHANG Xu-dong;Institute of Applied Ecology,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:CO_2浓度升高 ; 稳定同位素示踪 ; 植物光合作用 ; 土壤碳循环
  • 英文关键词:elevated atmospheric CO_2 concentration;;stable isotope tracing technique;;plant photosynthesis;;soil carbon cycling
  • 中文刊名:YYSB
  • 英文刊名:Chinese Journal of Applied Ecology
  • 机构:中国科学院沈阳应用生态研究所;中国科学院大学;
  • 出版日期:2017-05-31 11:23
  • 出版单位:应用生态学报
  • 年:2017
  • 期:v.28
  • 基金:国家自然科学基金重点项目(4163086);; 中国科学院战略性先导科技专项B(XDB15040200);中国科学院交叉创新团队计划项目资助~~
  • 语种:中文;
  • 页:YYSB201707037
  • 页数:10
  • CN:07
  • ISSN:21-1253/Q
  • 分类号:300-309
摘要
大气CO_2浓度升高影响植物光合作用过程和生物量积累,改变植物地上和地下生物量的动态分配.土壤有机质的形成和周转依赖于植物组分的输入,因此,CO_2浓度升高所造成的植物生理和代谢的变化对土壤碳库收支平衡具有重要影响.采用稳定碳同位素(~(13)C)技术研究土壤-植物系统的碳循环可阐明大气CO_2浓度升高条件下光合碳在植物各器官的分配特征和时间动态,明确光合碳在土壤中的积累、分解与迁移转化过程以及对土壤有机碳库周转的影响.本文综述了基于~(13)C自然丰度法或~(13)C示踪技术研究大气CO_2浓度升高对土壤-植物系统碳循环的影响,主要包括:1)对植物光合作用的同位素分馏的影响;2)对植物光合碳(新碳)分配动态的影响;3)对土壤有机碳新老碳库动态以及微生物转化过程的影响.明确上述过程及其调控机制可为预测CO_2浓度升高对陆地生态系统碳循环及源汇效应的长期影响奠定基础.
        Elevated atmospheric CO_2 affects plant photosynthesis process and biomass accumulation,furthermore alters the distribution of photosynthetic carbon( C) above-and below-ground. The formation and turnover of soil organic carbon( SOC) depends on the input of photosynthetic C,so the change of plant physiology and metabolism caused by increasing CO_2 concentration will further affect the balance of SOC pool. Therefore,stable isotope~(13)C technique is powerful for clarifying the influence of elevated atmospheric CO_2 on C cycling in plant-soil system,including the distribution of photosynthetic C among plant organs,and the transformation and accumulation of photosynthetic C in soil. This review summarized research focused on the effects of elevated atmospheric CO_2 on C cycling in terrestrial ecosystems based on~(13)C natural abundance or~(13)C tracing technique,including: 1) isotopic fractionation effect in plant photosynthesis; 2) the distribution of photosynthetic C in plant organs; 3) the transformation and stabilization of photosynthetic C in SOC driven by microbial process. Clarifying the above processes and controlling mechanisms is essential to predict longterm influence of elevated CO_2 on C cycling and evaluate the source-sink function of SOC in terrestrial ecosystems.
引文
[1]IPCC.Summary for policymakers//Stocker TF,Qin D,Plattner GK,eds.Climate Change 2013:The Physical Science Basis.Contribution of Working Groups I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge:Cambridge University Press,2013
    [2]Xu H(徐辉),Li L(李磊),Li Q-H(李庆会),et al.Effects of elevated atmospheric CO2concentration and temperature on photosynthesis system and quality components in tea plant.Journal of Nanjing Agricultural University(南京农业大学学报),2016,39(4):550-556(in Chinese)
    [3]Yuan ZY,Chen HYH.Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes.Nature Climate Change,2015,5:465-469
    [4]Han M(韩梅),Ji C-J(吉成均),Zuo W-Y(左闻韵),et al.Interactive effects of elevated CO2and temperature on the leaf anatomical characteristics of eleven species.Acta Ecologica Sinica(生态学报),2006,26(2):326-333(in Chinese)
    [5]Wang Y-T(王玉涛),Ma Z-B(马志波),Ma Q-Y(马钦彦),et al.Photosynthesis response to variation of CO2concentration and temperature of four broad-leaved trees in Beijing region.Journal of Agricultural University of Hebei(河北农业大学学报),2006,29(6):39-47(in Chinese)
    [6]Hao X-Y(郝兴宇),Han X(韩雪),Li P(李萍),et al.Effects of elevated atmospheric CO2concentration on mung bean leaf photosynthesis and chlorophyll fluorescence parameters.Chinese Journal of Applied Ecology(应用生态学报),2011,22(10):2776-2780(in Chinese)
    [7]Xiao L,Liu GB,Xue S.Elevated CO2concentration and drought stress exert opposite effects on plant biomass,nitrogen,and phosphorus allocation in Bothriochloa ischaemum.Journal of Plant Growth Regulation,2016,35:1088-1097
    [8]Jiang G-M(蒋高明),Qu C-M(渠春梅).Photosynthetic response of six woody species to elevated CO2in Quercus liaotungensis forest in the Beijing mountainous areas.Acta Phytoecologica Sinica(植物生态学报),2000,24(2):204-208(in Chinese)
    [9]Zhao G-Y(赵光影),Liu J-S(刘景双),Wang Y(王洋).Effects of elevated atmospheric CO2concentration and nitrogen on the growth of Calamagrostis angustifolia in Sanjiang Plain freshwater marsh.Chinese Journal of Applied Ecology(应用生态学报),2011,22(6):1653-1658(in Chinese)
    [10]Qiao YZ,Zhang HZ,Dong BD,et al.Effects of elevated CO2concentration on growth and water use efficiency of winter wheat under two soil water regimes.Agricultural Water Management,2010,97:1742-1748
    [11]Ehleringer J,Pearcy RW.Variation in quantum yields for CO2uptake among C3and C4plants.Plant Physiology,1983,73:555-559
    [12]Xu W-Q(许文强),Chen X(陈曦),Luo G-P(罗格平),et al.Progress of research on soil carbon cycling isotope opproach.Arid Land Geography(干旱区地理),2014,37(5):980-987(in Chinese)
    [13]Yuan H-C(袁红朝),Li C-Y(李春勇),Jian Y(简燕),et al.Stable isotope technique in the soil carbon cycling research of agricultural ecosystems.Journal of Isotopes(同位素),2014,27(3):170-178(in Chinese)
    [14]Kimball BA.Carbon dioxide and agricultural yield:An assemblage and analysis of 430 prior observations.Agronomy Journal,1983,75:779-788
    [15]Cure JD,Acock B.Crop responses to carbon dioxide doubling:A literature survey.Agricultural and Forest Meteorology,1986,38:127-145
    [16]Ning Y-F(宁有丰),Liu W-G(刘卫国),Cao Y-N(曹蕴宁).How does the carbon isotope composition response to the climate during the plant growing.Marine Geology&Quaternary Geology(海洋地质与第四纪地质),2002,22(3):105-108(in Chinese)
    [17]Liu X-Z(刘贤赵),Su Q(宿庆),Li J-Z(李嘉竹),et al.Responses of carbon isotopic composition of C3and C4herbaceous plants to temperature under controlled temperature conditions.Acta Ecologica Sinica(生态学报),2015,35(10):3278-3287(in Chinese)
    [18]Shao Z-S(邵在胜),Zhao Y-P(赵轶鹏),Song Q-L(宋琪玲),et al.Impact of elevated atmospheric carbon dioxide and ozone concentration on leaf photosynthesis of‘Shanyou 63’hybrid rice.Chinese Journal of Eco-Agriculture(中国生态农业学报),2014,22(4):422-429(in Chinese)
    [19]Aranjuelo I,Erice G,Sanz Sez A,et al.Differential CO2effect on primary carbon metabolism of flag leaves in durum wheat(Triticum durum Desf.).Plant,Cell&Environment,2015,38:2780-2794
    [20]Cui Q-Q(崔青青),Dong Y-H(董彦红),Li M(李曼),et al.Effect of water-nitrogen coupling on photosynthesis and ultrastructure of cucumber leaves under CO2enrichment.Chinese Journal of Applied Ecology(应用生态学报),2017,28(4):1237-1245(in Chinese)
    [21]Wang R-J(王润佳),Gao S-M(高世铭),Zhang X-C(张绪成).The physiological mechanism of the increment of C3plant leaf water use efficiency under high atmospheric CO2condition.Agricultural Research in the Arid Areas(干旱地区农业研究),2010,28(6):190-195(in Chinese)
    [22]Qiao Y,Zhang H,Dong B,et al.Effects of elevated CO2,concentration on growth and water use efficiency of winter wheat under two soil water regimes.Agricultural Water Management,2010,97:1742-1748
    [23]Farquhar GD,O’Leary MH,Berry JA.On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves.Australian Journal of Plant Physiology,1982,13:281-292
    [24]Pan L(潘璐),Liu J-C(刘杰才),Li X-J(李晓静),et al.Correlation between Rubisco activase and photosynthesis of cucumber in greenhouse under high temperature and elevated CO2.Acta Horticulturae Sinica(园艺学报),2014,41(8):1591-1600(in Chinese)
    [25]Kanno K,Suzuki Y,Makino A.A small decrease in Rubisco content by individual suppression of RBCS genes leads to improvement of photosynthesis and greater biomass production in rice under conditions of elevated CO2.Plant&Cell Physiology,2017,58:635-642
    [26]Ghashghaie J,Badeck FW.Opposite carbon isotope discrimination during dark respiration in leaves versus roots:A review.New Phytologist,2014,201:751-769
    [27]Kou T-J(寇太记),Zhu J-G(朱建国),Xie Z-B(谢祖彬),et al.Effect of elevated atmospheric p CO2and nitrogen level on replacement rate of soil organic carbon in winter wheat field.Acta Pedologica Sinica(土壤学报),2009,46(3):459-465(in Chinese)
    [28]Farquhar GD,Richards RA.Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes.Australian Journal of Plant Biology,1984,11:539-552
    [29]Butterly CR,Armstrong R,Chen D,et al.Carbon and nitrogen partitioning of wheat and field pea grown with two nitrogen levels under elevated CO2.Plant and Soil,2015,391:367-382
    [30]Shi Y-B(石元豹),Cao B(曹兵),Song L-H(宋丽华),et al.Effect of doubled CO2concentration on accumulation of photosynthate in Lycium barbarum by13C isotope tracer technique.Transactions of the Chinese Society of Agricultural Engineering(农业工程学报),2016,32(10):201-206(in Chinese)
    [31]Ma T(马田),Liu X(刘肖),Li J(李骏),et al.Effects of elevated atmospheric CO2on the distribution and accumulation of photosynthetic carbon in soilplant(spring wheat)system.Journal of Nuclear Agricultural Sciences(核农学报),2014,28(12):2238-2246(in Chinese)
    [32]Benlloch-Gonzalez M,Bochicchio R,Berger J,et al.High temperature reduces the positive effect of elevated CO2on wheat root system growth.Field Crops Research,2014,165:71-79
    [33]Shangguan ZP,Shao MA,Dyckmans J.Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat.Environmental&Experimental Botany,2000,44:141-149
    [34]Zhang X-C(张旭成),Guo T-W(郭天文),Tan X-L(谭雪莲),et al.The effects of nitrogen level on the root and shoot growth and their relationship with the water use efficiency in wheat plants.Acta Agriculturae Boreali-occidentalis Sinica(西北农业学报),2008,17(3):97-102(in Chinese)
    [35]Zhang X-Q(张向前),Cao C-F(曹承富),Chen H(陈欢),et al.Effect of long-term fertilization on root traits and root-shoot ratio of wheat in lime concretion black soil.Journal of Triticeae Crops(麦类作物学报),2017,37(3):382-389(in Chinese)
    [36]Dorodnikov M,Fangmeier A,Kuzyakov Y.Effects of atmospheric CO2enrichment onδ13C,δ13N values and turnover times of soil organic matter pools isolated by thermal techniques.Plant and Soil,2007,297:15-28
    [37]Bai E,Boutton TW,Liu F,et al.Spatial patterns of soilδ13C reveal grassland-to-woodland successional processes.Organic Geochemistry,2012,42:1512-1518
    [38]Liu W(刘微),Lyu H-H(吕豪豪),Chen Y-X(陈英旭),et al.Application of stable carbon isotope technique in the research of carbon cycling in soil-plant system.Chinese Journal of Applied Ecology(应用生态学报),2008,19(3):674-680(in Chinese)
    [39]Balesdent J,Wagner GH,Mariotti A.Soil organic matter turnover in long-term field experiments as revealed by carbon-13 natural abundance.Soil Science Society of America Journal,1988,52:118-124
    [40]Zhang L(张林),Sun X-Y(孙向阳),Gao C-D(高程达),et al.Applications of stable isotope ratio mass spectrometer in soil carbon cycle research.Analytical Instrumentation(分析仪器),2010,25(1):18-23(in Chinese)
    [41]Ineson P,Cotrufo MF,Bol R,et al.Quantification of soil carbon inputs under elevated CO2:C3 plants in a C4 soil.Plant and Soil,1996,187:345-350
    [42]Geng Y-B(耿元波),Shi J-J(史晶晶).Application of the carbon isotope in the partitioning of soil respiration in grassland.Scientia Agricultura Sinica(中国农业科学),2012,45(17):3541-3550(in Chinese)
    [43]Van Kessel C,Nitschelm J,Horwath WR,et al.Carbon-13 input and turn-over in a pasture soil exposed to long-term elevated atmospheric CO2.Global Change Biology,2000,6:123-135
    [44]Six J,An C,Kessel CV,et al.Impact of elevated CO2on soil organic matter dynamics as related to changes in aggregate turnover and residue quality.Plant and Soil,2001,234:27-36
    [45]Leavitt SW,Paul EA,Galadima A,et al.Carbon isotopes and carbon turnover in cotton and wheat FACE experiments.Plant and Soil,1996,187:147-155
    [46]Griepentrog M,Eglinton TI,Hagedorn F,et al.Interactive effects of elevated CO2and nitrogen deposition on fatty acid molecular and isotope composition of aboveand belowground tree biomass and forest soil fractions.Global Change Biology,2015,21:473-486
    [47]Hagedorn F,Spinnler D,Bundt M,et al.The input and fate of new C in two forest soils under elevated CO2.Global Change Biology,2003,9:862-872
    [48]Peralta AL,Wander MM.Soil organic matter dynamics under soybean exposed to elevated CO2.Plant and Soil,2008,303:69-81
    [49]Dorodnikov M,Kuzyakov Y,Fangmeier A,et al.C and N in soil organic matter density fractions under elevated atmospheric CO2:Turnover vs.stabilization.Soil Biology&Biochemistry,2011,43:579-589
    [50]Pendall E,Grosso SD,King JY,et al.Elevated atmospheric CO2,effects and soil water feedbacks on soil respiration components in a Colorado grassland.Global Biogeochemical Cycles,2003,17:509-520
    [51]Pendall E,King JY.Soil organic matter dynamics in grassland soils under elevated CO2:Insights from longterm incubations and stable isotopes.Soil Biology&Biochemistry,2007,39:2628-2639
    [52]Golchin A,Baldock JA,Oades JM,et al.A model linking organic matter decomposition,chemistry,and aggregate dynamics//Stewart BA,ed.Soil Processes and the Carbon Cycle.Boca Raton,FL:CRC Press,1998:245-266
    [53]John B,Yamashita T,Ludwig B,et al.Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use.Geoderma,2005,128:63-79
    [54]Hofmockel KS,Zak DR,Moran KK,et al.Changes in forest soil organic matter pools after a decade of elevated CO2and O3.Soil Biology&Biochemistry,2011,43:1518-1527
    [55]Christensen BT.Physical Fractionation of Soil and Organic Matter in Primary Particle Size and Density Separates.New York:Springer,1992
    [56]Díaz S,Grime JP,Harris J,et al.Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide.Nature,1993,363:616-617
    [57]Cardon ZG,Hungate BA,Cambardella CA,et al.Contrasting effects of elevated CO2on old and new soil carbon pools.Soil Biology&Biochemistry,2001,33:365-373
    [58]Anderson TH,Heinemeyer O,Weigel HJ.Changes in the fungal-to bacterial respiratory ratio and microbial biomass in agriculturally managed soils under free-air CO2enrichment(FACE):A six-year survey of a field study.Soil Biology&Biochemistry,2011,43:895-904
    [59]Williams MA,Rice CW,Owensby CE.Carbon dynamics and microbial activity in tallgrass prairie exposed to elevated CO2for 8 years.Plant and Soil,2000,227:127-137
    [60]Lipson DA,Wilson RF,Oechel WC.Effects of elevated atmospheric CO2on soil microbial biomass,activity and diversity in a chaparral ecosystem.Applied and Environmental Microbiology,2005,71:8573-8583
    [61]Insam H,Bth E,Berreck M,et al.Responses of the soil microbiota to elevated CO2in an artificial tropical ecosystem.Journal of Microbiological Methods,1999,36:45-54
    [62]Paterson E,Thornton B,Midwood AJ,et al.Atmospheric CO2enrichment and nutrient additions to planted soil increase mineralisation of soil organic matter,but do not alter microbial utilisation of plant-and soil Csources.Soil Biology&Biochemistry,2008,40:2434-2440
    [63]Sharona B,Susane Z.Altered patterns of soil carbon substrate usage and heterotrophic respiration in a pine forest with elevated CO2and N fertilization.Global Change Biology,2008,14:1025-1036
    [64]Butler JL,Williams MA,Bottomley PJ,et al.Microbial community dynamics associated with rhizosphere carbon flow.Applied&Environmental Microbiology,2003,69:6793-6800
    [65]Clemmensen KE,Bahr A,Ovaskainen O,et al.Roots and associated fungi drive long-term carbon sequestration in boreal forest.Science,2013,339:1615-1618
    [66]Hagedorn F,Hiltbrunner D,Streit K,et al.Nine years of CO2enrichment at the alpine treeline stimulates soil respiration but does not alter soil microbial communities.Soil Biology&Biochemistry,2013,57:390-400
    [67]Phillips RP,Finzi AC,Bernhardt ES.Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2fumigation.Ecology Letters,2011,14:187-194

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700