铜-稀土-铝催化剂的制备及其在顺酐加氢合成γ-丁内酯反应中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of Cu-rare-earth-aluminum Composite Oxides Catalysts and Their Performance in Reaction of Maleic Anhydride Hydrogenation to γ-Butyrolactone
  • 作者:林承顺 ; 于洋
  • 英文作者:LIN Cheng-shun;YU Yang;Sinopec Nanjing Chemical Industry Research Institute Co., Ltd.;
  • 关键词:顺酐 ; γ-丁内酯 ; 气相加氢反应 ; 铜基催化剂 ; 稀土 ; 制备 ; 性能
  • 英文关键词:maleic anhydride;;γ-butyrolactone;;gas-phase hydrogenation;;Cu-based catalyst;;rare earth;;preparation;;performance
  • 中文刊名:HCHX
  • 英文刊名:Chinese Journal of Synthetic Chemistry
  • 机构:中石化南京化工研究院有限公司;
  • 出版日期:2018-12-12 16:29
  • 出版单位:合成化学
  • 年:2019
  • 期:v.27;No.168
  • 基金:中国石化集团项目(418005-5)
  • 语种:中文;
  • 页:HCHX201902017
  • 页数:5
  • CN:02
  • ISSN:51-1427/O6
  • 分类号:62-66
摘要
采用沉淀-水热法制备了铜-稀土(Y、 La、 Ce、 Dy和Ho)-铝催化剂(CYA, CLA, CCA, CDA和CHA),其结构经XRD, H_2-TPR, TGA和NH_3-TPD等表征。并研究了催化剂在顺酐加氢合成γ-丁内酯反应中的性能。结果表明:当原料空速为1.0 h~(-1)时,催化性能强弱顺序为:CLA>CCA>CHA>CDA>CYA;当原料空速为0.2 h~(-1)时,催化剂稳定性高低顺序为:CLA>CCA>CDA>CHA>CYA。以CLA为催化剂,顺酐转化率和γ-丁内酯选择性均达到100%,持续时间为20 h。
        The Cu-rare(Y, La, Ce, Dy or Ho)-earth-aluminum composite oxides catalysts(CYA, CLA, CCA, CDA and CHA) were prepared by precipitation-hydrothermal method. The structures were characterized by XRD, H_2-TPR, TGA, NH_3-TPD, etc. And the performance of catalysts were investigated by using the reaction of maleic anhydride(MA) hydrogenation to γ-butyrolactone(GBL) as template raction. The results showed that the catalytic performance followed the order of CLA>CCA>CHA>CDA>CYA at the feed space velocity of 1.0 h~(-1). The catalytic stability accorded with the sequence of CLA>CCA>CDA>CHA>CYA, in which the 100% MA conversion and 100% GBL selectivity can both maintain 20 h.
引文
[1] KAMIYA Y, OOKA Y, OBARA C, et al. Alkylation-acylation of p-xylene with γ-butyrolactone or vinylacetic acid catalyzed by heteropolyacid supported on silica[J].Journal of Molecular Catalysis A:Chemical,2007,262(1-2):77-85.
    [2] MAO J X, KAMIYA Y, OKUHARA T. Alkylation of 1,3,5-trimethylbenzene with γ-butyrolactone over hyteropolyacid catalysts[J].Applied Catalysis A:General,2003,255(2):337-344.
    [3] YOON Y S, SHIN H K, KWAK B S. Ring conversion of γ-butyrolactone into N-methyl-2-pyrrolidone over modified zeolites[J].Catalysis Communications,2002,3(8):349-355.
    [4] SHIMASAKI Y, YANO H, SUGIURA H, et al. Development of a new production process for N-vinyl-2-pyrrolidone[J].Bulletin of the Chemical Society of Japan,2008,81(4):449-459.
    [5] LIECHTI M E, KUNZ I, GREMINGER P, et al. Clinical features of gamma-hydroxybutyrate and gamma-butyrolactone toxicity and concomitant drug and alcohol use[J].Drug and Alcohol Dependence,2006,81(3):323-326.
    [6] CHOI S U, KIM M K, HA H S, et al. In vivo functions of the γ-butyrolactone autoregulator receptor in streptomyces ambofaciens producing spiramycim[J].Biotechnology Letters,2008,30(5):891-897.
    [7] KITSON S, JONES S, WATTERS W, et al. Carbon-14 radiosynthesis of 4-(5-chloro-2-hydroxyphenyl)-3-(2-hydroxyethyl)-6-(trifluoramethyl)-[4-14C] quinolin-2(1H)-one(XEN-D0401):A novel BK channel activator[J].Journal of Labelled Compounds and Radiopharmaceuticals,2010,53(3):140-146.
    [8] 刘伟. γ-丁内酯的生产技术[J].科技情报开发与经济,2010,20(22):159-161.
    [9] RAMíREZ-VERDUZCO L F, DELOS R J A, TORRES-GARCíA E. Solvent effect in homogeneous and heterogeneous reactions to remove dibenzothiophene by and oxidation-extraction scheme[J].Industrial & Engineering Chemistry Research,2008,47(15):5353-5361.
    [10] HUANG J Y, LIU X J, KANG X L, et al. Studay on γ-butyrolactone for LiBOB-based electrolytes[J].Journal of Power Sources,2009,189(1):458-461.
    [11] PING P, WANG Q S, SUN J H, et al. Effect of sulfites on the performance of LiBOB/γ-butyrolactone electrolytes[J].Journal of Power Sources,2011,196(2):776-783.
    [12] CASTIGLIONI G L, FERRARI M, GUERCIO A, et al. Chromium-free catalysts for selective vapor phase hydrogenation of maleic anhydride to γ-butyrolactone[J].Catalysis Today,1996,27(1-2):181-186.
    [13] HU T J, YIN H B, ZHANG R C, et al. Gas phase hydrogenation of maleic anhydride to γ-butyrolactone by Cu-Zn-Ti catalysts[J].Catalysis Communications,2007,8(2):193-199.
    [14] ZHANG D Z, YIN H B, ZHANG R C, et al. Gas phase hydrogenation of maleic anhydride to γ-butyrolactone by Cu-Zn-Ce catalyst in the presence of n-butanol[J].Catalysis Letters,2008,122(1-2):176-182.
    [15] ZHANG D Z, YIN H B, GE C, et al. Selective hydrogenation of maleic anhydride to γ-butyrolactone and tetrahydrofuran by Cu-Zn-Zr catalyst in the presence of ethanol[J].Journal of Industrial and Engineering Chemistry,2009,15(4):537-543.
    [16] YU Y, GUO Y L, ZHAN W C, et al. Effect of promoters on Cu-ZnO-SiO2 catalyst for gas-phase hydrogenation of maleic anhydride to γ-butyrolactone at atmospheric pressure[J].Journal of Molecular Catalysis A:Chemical,2014,392:1-7.
    [17] 陈长林,金珊. 二氧化铈改性的铜锌催化剂上顺酐气相加氢制γ-丁内酯[J].燃料化学学报,2011,39(11):866-870.
    [18] YU Y, GUO Y L, ZHAN W C, et al. Gas-phase hydrogenation of maleic anhydride to γ-butyrolactone at atmospheric pressure over Cu-CeO2-Al2O3 catalyst[J].Journal of Molecular Catalysis A:Chemical,2011,337(1-2):77-81.
    [19] YU Y, ZHAN W C, GUO Y, et al. Gas-phase hydrogenation of maleic anhydride to γ-butyrolactone over Cu-CeO2-Al2O3 catalyst at atmospheric pressure:Effects of the residual sodium and water in the catalyst precursor[J].Journal of Molecular Catalysis A:Chemical,2011,395:392-397.
    [20] 杨燕萍,张因,李海涛,等. Ni/SiO2、Ni/TiO2-SiO2催化剂上顺酐液相选择加氢合成γ-丁内酯[J].分子催化,2010,24(6):499-504.
    [21] 杨燕萍,张因,高春光,等. TiOx(x<2)表面修饰Ni/TiO2-SiO2催化顺酐液相选择加氢合成γ-丁内酯[J].催化学报,2011,32(11):1768-1774.
    [22] MEYER C I, MARCHI A J, MONZON A, et al. Deactivation and regeneration of Cu/SiO2 catalyst in the hydrogenation of maleic anhydride. Kinetic modeling[J].Applied Catalysis A:General,2009,367(1-2):122-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700