基于OLGA的海底管道水合物生成规律模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:OLGA based simulation on the formation laws of hydrates in pipelines
  • 作者:丁家祥 ; 刘军 ; 梁德青
  • 英文作者:DING Jiaxiang;LIU Jun;LIANG Deqing;Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences;Guangzhou Research Center for Gas Hydrate,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:海底管道 ; 水合物 ; 流动保障 ; 动力学 ; 立管 ; 水平输送管道 ; OLGA
  • 英文关键词:subsea pipelines;;hydrates;;flow assurance;;kinetics;;riser;;horizontal transportation pipeline;;OLGA
  • 中文刊名:YQCY
  • 英文刊名:Oil & Gas Storage and Transportation
  • 机构:中国科学院广州能源研究所;中国科学院广州天然气水合物研究中心;中国科学院大学;
  • 出版日期:2019-02-25
  • 出版单位:油气储运
  • 年:2019
  • 期:v.38;No.362
  • 基金:国家自然科学基金资助项目“沉积物中天然气水合物三维分解动力学及影响机制研究”,51376183
  • 语种:中文;
  • 页:YQCY201902018
  • 页数:6
  • CN:02
  • ISSN:13-1093/TE
  • 分类号:122-127
摘要
为了研究海底油气混输管道内水合物的形成过程及管道堵塞问题,结合凝析气生成水合物的相平衡曲线和CSMHyK v2.0水合物动力学模型,使用OLGA软件对海底立管和水平输送管道内水合物生成情况进行数值模拟。结果表明:在某海底管道工艺参数下,无论是立管还是水平输送管内都有大量水合物生成,其水合物浆黏度分别增加了10倍、18倍。在立管中从海底到海平面管段水合物生成速率由大到小,最后趋于0;在水平输送管道中,水合物生成速率保持不变。管道出口压力降低,水合物生成区域减小,且水合物浆的黏度大幅下降。当立管和水平输送管道出口压力分别控制在3 MPa、2 MPa时,可以避免水合物生成,保障管道安全运营。
        To investigate the formation process and blockage of hydrates in deepwater oil-gas multiphase pipelines, the formation process of hydrates in subsea risers and subsea horizontal transportation pipelines was numerically simulated by OLGA, based on the phase equilibrium curve of hydrate formation from condensate gas and the hydrate kinetic model(CSMHyK v2.0). It is shown that under the process parameters of one certain subsea pipeline, a large amount of hydrates are formed in both risers and horizontal transportation pipelines, and the viscosity of hydrate slurry increases 10 times in risers and 18 times in horizontal transportation pipelines. The formation rate of hydrate in risers decreases from the sea floor to the sea level and finally approaches to zero, while that in horizontal transportation pipelines remains unchanged. The area of hydrate formation and the viscosity of hydrate slurry decrease with the decline of pipeline outlet pressure. When the outlet pressure of risers and horizontal transportation pipelines are controlled at 3 MPa and 2 MPa, respectively, the formation of hydrates can be avoided and the smooth flow of pipelines can be ensured.
引文
[1]SLOAN E D,KOH C.Clathrate hydrates of natural gases[M].3th ed.New York:CRC Press,2007:1-27.
    [2]孙可明,王婷婷,翟诚,等.不同饱和度天然气水合物加热分解界面变化规律[J].特种油气藏,2018,25(5):129-134.SUN K M,WANG T T,ZHAI C,et al.Heating Decomposition Interface of Natural Gas Hydrate with Different Saturations[J].Special Oil&Gas Reservoirs,2018,25(5):129-134.
    [3]孙可明,王婷婷,翟诚,等.天然气水合物加热分解储层变形破坏规律研究[J].特种油气藏,2017,24(5):91-96.SUN K M,WANG T T,ZHAI C,et al.Patterns of Reservoir Deformation due to Thermal Decomposition of Natural Gas Hydrates[J].Special Oil&Gas Reservoirs,2017,24(5):91-96.
    [4]DELGADOLINARES J G,MAJID A A A,SLOAN E D,et al.Model water-in-oil emulsions for gas hydrate studies in oil continuous systems[J].Energy&Fuels,2013,27(8):4564-4573.
    [5]TURNER D J,MILLER K T,SLOAN E D.Direct conversion of water droplets to methane hydrate in crude oil[J].Chemical Engineering Science,2009,64(23):5066-5072.
    [6]HUO Z,FREER E,LAMAR M,et al.Hydrate plug prevention by anti-agglomeration[J].Chemical Engineering Science,2001,56(17):4979-4991.
    [7]KHLEBNIKOV V N,ANTONOV S V,MISHIN A S,等.多孔介质中天然气水合物生成的主要影响因素[J].天然气工业,2017,37(5):38-45.KHLEBNIKOV V N,ANTONOV S V,MISHIN A S,et al.Major factors influencing the formation of natural gas hydrates in porous media[J].Natural Gas Industry,2017,37(5):38-45.
    [8]孙宝江.石油天然气工程多相流动[M].青岛:中国石油大学出版社,2013:21-38.SUN B J.Multiphase flow in oil and gas engineering[M].Qingdao:China University of Petroleum Press,2013:21-38.
    [9]代文杰,王树立,饶永超,等.氧化石墨烯作为新型促进剂加速CO2水合物生成实验[J].天然气工业,2016,36(11):83-88.DAI W J,WANG S L,RAO Y C,et al.Experiment on a new accelerant-graphene oxide for accelerating the formation of CO2hydrate[J].Natural Gas Industry,2016,36(11):83-88.
    [10]KASHCHIEV D,FIROOZABADI A.Induction time in crystallization of gas hydrates[J].Journal of Crystal Growth,2003,250(3/4):499-515.
    [11]KASHCHIEV D,FIROOZABADI A.Nucleation of gas hydrates[J].Journal of Crystal Growth,2002,243(3):476-489.
    [12]SKOVBORG P,RASMUSSEN P.A mass transport limited model for the growth of methane and ethane gas hydrates[J].Chemical Engineering Science,1994,49(8):1131-1143.
    [13]ENGLEZOS P,KALOGERAKIS N,DHOLABHAI P,et al.Kinetics of formation of methane and ethane gas hydrates[J].Chemical Engineering Science,1987,42(11):2647-2658.
    [14]ZERPA L E,SLOAN E D,SUM A K,et al.Overview of CSMHyK:A transient hydrate formation model[J].Journal of Petroleum Science&Engineering,2012,98/99(6):122-129.
    [15]DAVIES S R,BOXALL J A,DIEKER L E,et al.Predicting hydrate plug formation in oil-dominated flowlines[J].Journal of Petroleum Science&Engineering,2010,72(3):302-309.
    [16]BOXALL J,DAVIES S,KOH C,et al.Predicting when and where hydrate plugs form in oil-dominated flowlines[J].SPEProjects Facilities&Construction,2009,4(3):80-86.
    [17]SHI B H,JING G,SUN C Y,et al.An inward and outward natural gas hydrates growth shell model considering intrinsic kinetics,mass and heat transfer[J].Chemical Engineering Journal,2011,171(3):1308-1316.
    [18]李长俊,黄婷,贾文龙.深水天然气水合物及其管道输送技术[J].科学通报,2016,61(22):2449-2462.LI C J,HUANG T,JIA W L,et al.A review of natural gas hydrates and its pipeline transportation technologies in deep water[J].Chinese Science Bulletin,2016,61(22):2449-2462.
    [19]TURNER D J.Clathrate hydrate formation in water-in-oil dispersions[D].Colorado:Colorado School of Mines,Arthur Lakes Library,2005:22-45.
    [20]TURNER D J,MILLER K T,SLOAN E D.Methane hydrate formation and an inward growing shell model in water-in-oil dispersions[J].Chemical Engineering Science,2009,64(18):3996-4004.
    [21]WERNER F,AND D K S,SALAMATIN A N,et al.Formation of methane hydrate from polydisperse ice powders[J].Journal of Physical Chemistry B,2006,110(26):13283-13295.
    [22]STAYKOVAD K,WERNER F,SALAMATIN A N,et al.Formation of porous gas hydrates from ice powders:Diffraction experiments and multistage model[J].Journal of Physical Chemistry B,2003,107(37):10299-10311.
    [23]ROBERT W,HENNING A J,SCHULTZ V T,et al.Neutron diffraction studies of CO2 clathrate hydrate:Formation from deuterated ice[J].Journal of Physical Chemistry A,2003,104(21):5066-5071.
    [24]赵建奎,白广臣,冯毅.气-水合物浆液两相流动模拟计算[J].油气储运,2010,29(10):734-738.ZHAO J K,BAI G C,FENG Y.Numerical simulation of gashydrate slurry two-phase flow[J].Oil&Gas Storage and Transportation,2010,29(10):734-738.
    [25]魏丁,王武昌,李玉星,等.管道CCl3F水合物浆流动特性的数值模拟[J].油气储运,2016,35(8):828-832.WEI D,WANG W C,LI Y X,et al.Numerical simulation on flow behaviors of CCl3F hydrate slurry in pipelines[J].Oil&Gas Storage and Transportation,2016,35(8):828-832.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700