自适应巡航及协同式巡航对交通流的影响分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Adaptive Cruise Control and Cooperative Adaptive Cruise Control on Traffic Flow
  • 作者:王祺 ; 谢娜 ; 侯德藻 ; 黄子超 ; 李志恒
  • 英文作者:WANG Qi;XIE Na;HOU De-zao;HUANG Zi-chao;LI Zhi-heng;Research Center of Intelligent Transport System, Research Institute of Highway Ministry of Transport;School of Management Science and Engineering, Central University of Finance and Economics;Graduate School at Shenzhen,Tsinghua University;
  • 关键词:交通工程 ; 自动驾驶 ; 仿真分析 ; 基本图模型 ; 混合交通流 ; 动态响应 ; 渗透率
  • 英文关键词:traffic engineering;;automated driving;;simulation analysis;;fundamental diagram model;;mixed traffic;;dynamic response;;penetration rate
  • 中文刊名:ZGGL
  • 英文刊名:China Journal of Highway and Transport
  • 机构:交通运输部公路科学研究院智能交通研究中心;中央财经大学管理科学与工程学院;清华大学深圳研究生院;
  • 出版日期:2019-06-15
  • 出版单位:中国公路学报
  • 年:2019
  • 期:v.32;No.190
  • 基金:国家自然科学基金项目(71772195)
  • 语种:中文;
  • 页:ZGGL201906020
  • 页数:11
  • CN:06
  • ISSN:61-1313/U
  • 分类号:192-201+209
摘要
自适应巡航(ACC)和协同式自适应巡航(CACC)等自动驾驶技术正逐渐进入市场,未来一段时间内道路交通流将由人工驾驶车辆与不同等级、不同形式的自动驾驶车辆混合构成。为分析ACC和CACC对交通流的影响,利用实测交通数据NGSim建立人工驾驶车辆跟驰模型,并在综合已有ACC和CACC模型的基础上,提出基于安全间距的自动驾驶跟驰行为模型,进而得出不同ACC,CACC车辆渗透率下交通流的基本图模型。研究结果表明:自动驾驶可以提升交通容量;与ACC车辆比例r_a相比,CACC车辆比例r_c对交通容量的影响更为显著;当r_c>0.5时,饱和流量快速增加,当r_c=1时,饱和流量约为纯人工驾驶时的2倍。进一步,通过仿真考察车辆在车队中的跟驰响应和交通流在瓶颈处的运行情况。研究结果表明:自动驾驶改善了交通流的动态特性,对存在跟驰关系的连续车流来说,自动驾驶使得后车可以更加及时地响应前车的行为,车流会在更短的时间内进入稳态;在交通瓶颈处,自动驾驶降低了拥堵程度,提高了阻塞发生的临界流量。总体来看,自动驾驶对交通流静态和动态性能均有所提升,特别是在协同式自动驾驶场景下,车辆行为更加协调一致,交通流表现出良好的抗扰性,进一步验证了车路协同对自动驾驶的意义。
        Adaptive cruise control(ACC) systems and cooperative adaptive cruise control(CACC) systems are entering the market gradually. In the future, traffic flow will consist of manual vehicles and automated vehicles at different automation levels. To analyze the effect of ACC and CACC vehicles on traffic flow, this study established a car-following model for manual driving based on NGSim, which was obtained from real traffic flow observations; proposed a car-following model of ACC and CACC vehicles based on safety distance; and obtained fundamental diagrams for different penetration rates of ACC and CACC vehicles. The results showed that automated driving can improve traffic capacity. Compared to the penetration rate of ACC vehicles(r_a), the penetration rate of CACC vehicles(r_c) has a more significant impact on capacity. When r_c>0.5, the saturated capacity increases rapidly, and when r_c=1, the saturated capacity is approximately twice that of pure manual driving. Platoon responses and traffic flows at bottlenecks were also investigated. Results showed that automated driving enhances the dynamic characteristics of traffic flow. As for platoons, automated driving enables a following vehicle to respond to the preceding vehicle's behavior in time, and traffic flow reaches steady state in a shorter time. At bottlenecks, automated driving reduces congestion and increases the critical flow of congestion. In general, automated driving improves the static and dynamic performance of traffic flow, particularly in cooperative driving scenarios, where vehicle behavior is more consistent and traffic flow shows good stability, which further validates the significance of vehicle-infrastructure cooperation.
引文
[1]CHEN D,AHN S,CHITTURI M,et al.Towards Vehicle Automation:Roadway Capacity Formulation for Traffic Mixed with Regular and Automated Vehicles[J].Transportation Research Part B,2017,100:196-221.
    [2]TALEBPOUR A,MAHMASSANI H S.Influence of Connected and Autonomous Vehicles on Traffic Flow Stability and Throughput[J].Transportation Research Part C,2016,71:143-163.
    [3]《中国公路学报》编辑部.中国交通工程学术研究综述·2016[J].中国公路学报,2016,29(6):1-161.Editorial Department of China Journal of Highway and Transport.Review on China’s Traffic Engineering Research Progress:2016[J].China Journal of Highway and Transport,2016,29(6):1-161.
    [4]《中国公路学报》编辑部.中国汽车工程学术研究综述·2017[J].中国公路学报,2017,30(6):1-197.Editorial Department of China Journal of Highway and Transport.Review on China’s Automotive Engineering Research Progress:2017[J].China Journal of Highway and Transport,2017,30(6):1-197.
    [5]DIAKAKI C,PAPAGEORGIOU M,PAPAMICHAILI,et al.Overview and Analysis of Vehicle Automation and Communication Systems from a Motorway Traffic Management Perspective[J].Transportation Research Part A,2015,75:147-165.
    [6]XIAO L,GAO F.A Comprehensive Review of the Development of Adaptive Cruise Control Systems[J].Vehicle System Dynamics,2010,48(10):1167-1192.
    [7]WANG Q,LI B,LI Z,et al.Effect of Connected Automated Driving on Traffic Capacity[C]//IEEE.Proceedings of 2017 Chinese Automation Congress.New York:IEEE,2017:633-637.
    [8]KISHORE B A,AGATZ N,ZUIDWIJK R.Planning of Truck Platoons:A Literature Review and Directions for Future Research[J].Transportation Research Part B,2018,107:212-228.
    [9]ALAM A,BESSELINK B,TURRI V,et al.Heavyduty Vehicle Platooning for Sustainable Freight Transportation:A Cooperative Method to Enhance Safety and Efficiency[J].IEEE Control Systems,2015,35(6):34-56.
    [10]MILANES V,SHLADOVER S E.Modeling Cooperative and Autonomous Adaptive Cruise Control Dynamic Responses Using Experimental Data[J].Transportation Research Part C,2014,48:285-300.
    [11]MARSDEN G,MCDONALD M,BRACKSTONE M.Towards an Understanding of Adaptive Cruise Control[J].Transportation Research Part C,2001,9(1):33-51.
    [12]秦严严,王昊,王炜,等.混有CACC车辆和ACC车辆的异质交通流基本图模型[J].中国公路学报,2017,30(10):127-136.QIN Yan-yan,WANG Hao,WANG Wei,et al.Fundamental Diagram Model of Heterogeneous Traffic Flow Mixed with Cooperative Adaptive Cruise Control Vehicles and Adaptive Cruise Control Vehicles[J].China Journal of Highway and Transport,2017,30(10):127-136.
    [13]YE L,YAMAMOTO T.Modeling Connected and Autonomous Vehicles in Heterogeneous Traffic Flow[J].Physica A,2018,490:269-277.
    [14]XIE D F,ZHAO X M,HE Z.Heterogeneous Traffic Mixing Regular and Connected Vehicles:Modeling and Stabilization[J].IEEE Transactions on Intelligent Transportation Systems,2018(99):1-12.
    [15]RAKHA H,HANKEY J,PATTERSON A,et al.Field Evaluation of Safety Impacts of Adaptive Cruise Control[J].Journal of Intelligent Transportation Systems,2001,6(3):225-259.
    [16]CHANG T H,LAI I S.Analysis of Characteristics of Mixed Traffic Flow of Autopilot Vehicles and Manual Vehicles[J].Transportation Research Part C,1997,5(6):333-348.
    [17]YANG D,QIU X P,MA L N,et al.Cellular Automata-Based Modeling and Simulation of a Mixed Traffic Flow of Manual and Automated Vehicles[J].Transportation Research Record,2017(2622):105-116.
    [18]WERF J V,SHLADOVER S E,MILLER M A,et al.Effects of Adaptive Cruise Control Systems on Highway Traffic Flow Capacity[J].Transportation Research Record,2002(1800):78-84.
    [19]ARNAOUT G M,ARNAOUT J P.Exploring the Effects of Cooperative Adaptive Cruise Control on Highway Traffic Flow Using Microscopic Traffic Simulation[J].Transportation Planning and Technology,2014,37(2):186-199.
    [20]MICHAEL J B,GODBOLE D N,LYGEROS J,et al.Capacity Analysis of Traffic Flow over a Singlelane Automated Highway System[J].Journal of Intelligent Transportation Systems,1998,4(1/2):49-80.
    [21]李力,姜锐,贾斌,等.现代交通流理论与应用:高速公路交通流(卷Ⅰ)[M].北京:清华大学出版社,2011.LI Li,JIANG Rui,JIA Bin,et al.Modern Theory and Application of Traffic Flow:Highway Traffic(Vol.Ⅰ)[M].Beijing:Tsinghua University Press,2011.
    [22]BANDO M,HASEBE K,NAKAYAMA A,et al.Dynamical Model of Traffic Congestion and Numerical Simulation[J].Physical Review E,1995,51(2):1035-1042.
    [23]HELBING D,TILCH B.Generalized Force Model of Traffic Dynamics[J].Physical Review E,1998,58(1):133-138.
    [24]JIANG R,WU Q,ZHU Z.Full Velocity Difference Model for A Car-following Theory[J].Physical Review E,2001,64(1):017101.
    [25]LI L,CHEN X M,ZHANG L.A Global Optimization Algorithm for Trajectory Data Based Car-following Model Calibration[J].Transportation Research Part C,2016,68:311-332.
    [26]LI L,PENG X Y,WANG F Y,et al.A Situationaware Collision Avoidance Strategy for Car-following[J].IEEE/CAA Journal of Automatica Sinica,2018,5(5):1012-1016.
    [27]LEE D H,CHANDRASEKAR P,CHEU R L.Customized Simulation Modeling Using PARAMICS Application Programmer Interface[C]//IEEE.Proceedings of the 2001IEEE Intelligent Transportation Systems.New York:IEEE,2002:842-847.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700