疲劳荷载作用下的三维弹塑性弯曲裂纹尖端张开位移
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Three dimensional elastic-plastic curved crack tip opening displacement under fatigue load
  • 作者:杨大鹏 ; 潘海洋 ; 刘邦先 ; 张平萍 ; 杨新华
  • 英文作者:Yang Dapeng;Pan Haiyang;Liu Bangxian;Zhang Pingping;Yang Xinhua;Sinosteel Zhengzhou Research Institute of Steel Wire Products Co.,Ltd.;School of Civil Engineering and Mechanics,Huazhong University of Science and Technology;Department of Mechanical Engineering,Zhengzhou Technical College;Urban Rail Transport Department,Zhengzhou Technical College;
  • 关键词:三维裂纹体 ; 弯曲裂纹 ; 张开位移 ; 疲劳荷载 ; 二阶摄动方法
  • 英文关键词:three dimensional crack body;;curved crack;;opening displacement;;fatigue load;;second order perturbation method
  • 中文刊名:YEKJ
  • 英文刊名:Journal of Wuhan University of Science and Technology
  • 机构:中钢集团郑州金属制品研究院有限公司;华中科技大学土木工程与力学学院;郑州职业技术学院机械工程系;郑州职业技术学院城市轨道交通系;
  • 出版日期:2017-10-24 10:13
  • 出版单位:武汉科技大学学报
  • 年:2017
  • 期:v.40;No.176
  • 基金:国家自然科学基金重大研究计划项目(91016026);; 河南省博士后科研资助项目(博士后编号:166053)
  • 语种:中文;
  • 页:YEKJ201705014
  • 页数:6
  • CN:05
  • ISSN:42-1608/N
  • 分类号:79-84
摘要
综合考虑疲劳作用应力、三维塑性区域边界上的交变正应力与交变剪应力,利用二阶摄动方法建立了计算疲劳载荷作用下三维弹塑性弯曲裂纹尖端张开位移的理论模型。用数值解法进行求解,并作图分析了三维弹塑性弯曲裂纹尖端张开位移的最大值和变化幅值与三维裂纹体几何尺寸及外载荷之间的变化关系。结果表明,随着裂纹体厚度的增大,三维弹塑性弯曲裂纹尖端张开位移的最大值与变化幅值不断减小;当裂纹体几何尺寸相同时,弯曲裂纹尖端张开位移的最大值与变化幅值均随外载荷的增加而逐渐增大。
        Taking the effects of fatigue stress,cyclic normal and shear stresses on the boundaries of three dimensional plastic area into consideration,this paper has built the theoretical models to calculate three dimensional elastic-plastic curved crack tip opening displacement(CCTOD)under fatigue loads by using second order perturbation method.Numerical solutions were made,and the relation curves between the maximum or amplitude of CCTOD and the crack body geometrical dimensions as well as the external loads were analyzed.The results show that the maximum and amplitude of CCTOD decline with the increase of crack body thickness.When crack bodies have the same size,the maximum and amplitude of CCTOD increase with increasing external loads.
引文
[1]黄学伟,蔡力勋,包陈,等.基于低周疲劳损伤的裂纹扩展行为数值模拟新方法[J].工程力学,2011,28(10):202-208.
    [2]廖芳芳,王伟,陈以一.往复荷载下钢结构节点的超低周疲劳断裂预测[J].同济大学学报:自然科学版,2014,42(4):539-547.
    [3]嵇醒.断裂力学判据的评述[J].力学学报,2016,48(4):741-753.
    [4]王清远,刘永杰.结构金属材料超高周疲劳破坏行为[J].固体力学学报,2010,31(5):496-503.
    [5]魏国前,岳旭东,党章,等.结合S-N曲线和断裂力学的焊接结构疲劳寿命分析[J].焊接学报,2017,38(2):23-27.
    [6]Zhao Minghao,Dang Huayang,Xu Guangtao,et al.Dielectric breakdown model for an electrically semi-permeable penny-shaped crack in three-dimensional piezoelectric media[J].Acta Mechanica Solida Sinica,2016,29(5):536-546.
    [7]Yang Shengqi,Huang Yanhua,Ranjith P G,et al.Discrete element modeling on the crack evolution behavior of brittle sandstone containing three fissures under uniaxial compression[J].Acta Mechanica Sinica,2015,31(6):871-889.
    [8]丁遂栋,孙利民.断裂力学[M].北京:机械工业出版社,1997:148-169.
    [9]杨卫.宏微观断裂力学[M].北京:国防工业出版社,1995:65-70.
    [10]杨大鹏,赵耀,白玲.准静载作用下弹塑性微弯裂纹尖端塑性区[J].应用力学学报,2010,27(2):401-405.
    [11]郭万林,于培师.构件三维断裂与疲劳力学及其在航空工程中的应用[J].固体力学学报,2010,31(5):553-571.
    [12]张斌.材料结构宏观三维断裂和微观破坏行为研究[D].南京:南京航空航天大学,2005.
    [13]杨大鹏.微弯延伸裂纹断裂特性的研究[D].武汉:华中科技大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700