4周运动训练小鼠骨骼肌脂滴包被蛋白、比较基因识别58及肌内三酰甘油的表达
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Expression of perilipin,comparative gene identification-58 and triglyceride in mouse skeletal muscle after 4 weeks of endurance training
  • 作者:廖帅雄 ; 张国栋 ; 宋刚
  • 英文作者:Liao Shuaixiong;Zhang Guodong;Song Gang;School of Physical Education,Southwest University;Key Laboratory of Physical Evaluation and Function Monitoring of General Administration of Sport of China;Institute for Sports Rehabilitation,Southwest University;
  • 关键词: ; 骨骼 ; 甘油三酯类 ; 耐力训练 ; 组织工程 ; 运动训练 ; 骨骼肌 ; 肌内三酰甘油 ; 脂滴包被蛋白家族 ; PLINs ; 比较基因识别58 ; CGI-58 ; 组织构建
  • 英文关键词:,Muscle,Skeletal;;Triglycerides;;Resistance Training;;Tissue Engineering
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:西南大学体育学院;国家体育总局体质评价与机能监控重点实验室;西南大学运动康复研究所;
  • 出版日期:2018-10-16 14:35
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.860
  • 语种:中文;
  • 页:XDKF201903007
  • 页数:7
  • CN:03
  • ISSN:21-1581/R
  • 分类号:32-38
摘要
背景:骨骼肌中也存在比较基因识别58和脂滴包被蛋白的表达,国内外的研究大都集中在训练骨骼肌激素敏感性脂肪酶调节脂肪分解的作用上,对运动时骨骼肌肌内三酰甘油、脂滴包被蛋白家族与比较基因识别58变化的研究较少。目的:观察4周运动训练C57BL/6J小鼠骨骼肌脂滴包被蛋白家族和比较基因识别58的变化,探讨其与肌内三酰甘油变化的关系。方法:80只6周龄雄性健康SPF级C57BL/6J小鼠,按运动训练前,运动1,2,3,4周5个时相,随机分为对照组和耐力训练组各5组。耐力训练组第1周为适应性训练;正式训练4周,每周6d,训练时间在早上8:00-12:00,以16 m/min,5%度坡度进行40 min跑台运动;安静组自由饮食。检测小鼠体质量和血液指标;小鼠腓肠肌和比目鱼肌肌内三酰甘油含量、脂滴包被蛋白家族和比较基因识别58基因及蛋白的表达。结果与结论:①耐力训练对小鼠体质量、血糖和游离脂肪酸的变化没有影响,降低血总三酰甘油、血总胆固醇和胰岛素水平(P <0.05),增加高密度脂蛋白胆固醇水平(P <0.05);②比目鱼肌中的肌内三酰甘油高于腓肠肌;耐力训练时,骨骼肌肌内三酰甘油先降后升(P <0.05);③耐力运动过程中,骨骼肌(比目鱼肌和腓肠肌)脂滴包被蛋白家族(除PLIN2)、比较基因识别58基因和蛋白显著增加(P <0.05);④耐力训练早期,脂滴包被蛋白家族(除PLIN2)、比较基因识别58基因和蛋白的表达变化参与了对肌内三酰甘油水解的调节;随后其效果减弱,揭示肌内三酰甘油合成途径的影响大于分解途径。
        BACKGROUND: Comparative gene identification-58 and perilipins(2-5) are expressed in skeletal muscle. There are many studies addressing hormone sensitive lipase regulating steatolysis in skeletal muscle, but changes of triglyceride, perilipin family proteins and comparative gene identification-58 in skeletal muscle during exercise are little reported. OBJECTIVE: To investigate the effects of 4-week endurance training on the expression of perilipin family proteins and comparative gene identification-58 in C57 BL/6 J mice, and to explore their correlation with triglyceride level. METHODS: Eighty 6-week-old male healthy SPF C57 BL/6 J mice were randomly divided into control group and endurance training group according to the time-points pre-exercise, 1, 2, 3 and 4 weeks post-exercise. The first week of endurance exercise was adaptive training, and the formal training lasted for 4 weeks, 6 days weekly, the training time in the morning 8: 00-12: 00, with 16 m/minute, 5% degree slope for 40 minutes of treadmill exercise. Mice in the control group were allowed free access to food. The body mass and blood indexes were tested. The triglyceride level, expression of perilipin family proteins and comparative gene identification-58 in mouse gastrocnemius and soleus were detected. RESULTS AND CONCLUSION: Endurance training showed no effect on mouse body mass, blood glucose and free fatty acids, and significantly reduced blood total triglyceride, total cholesterol and insulin levels(P < 0.05), and increased the level of high density lipoprotein cholesterol(P < 0.05). The intramuscular triglyceride of the soleus muscle was higher than that of the gastrocnemius muscle. During the period of endurance training, intramuscular triglycerides firstly reduced and then rose(P < 0.05). In the working muscles(soleus and gastrocnemius) perilipin family proteins(except perlipin 2), comparative gene identification-58 mRNA and protein were significantly increased(P < 0.05). In summary, in the early stage of endurance training, changes in perilipin family proteins(except PLIN2), comparative gene identification-58 mRNA and protein expression participate in the regulation of hydrolysis, and their participation is weakened thereafter, indicating intramuscular triglyceride synthesis on fat is stronger than its hydrolysis.
引文
[1]Watt MJ,Cheng Y.Triglyceride metabolism in exercising muscle.Biochim Biophys Acta.2017;1862(10 Pt B):1250-1259.
    [2]Noland RC.Exercise and Regulation of Lipid Metabolism//Bouchard C.Progress in Molecular Biology and Translational Science.2015:39-74.
    [3]Yao-Borengasser A,Varma V,Coker RH,et al.Adipose triglyceride lipase expression in human adipose tissue and muscle.Role in insulin resistance and response to training and pioglitazone.Metabolism.2011;60(7):1012-1020.
    [4]Bai X,Li H,Yang W,et al.Sequence of fat partitioning and its relationship with whole body insulin resistance.Chin Med J(Engl).2010;123(24):3605-3611.
    [5]Ramos SV,Turnbull PC,MacPherson RE.Adipose tissue depot specific differences of PLIN protein content in endurance trained rats.Adipocyte.2016;5(2):212-223.
    [6]Brasaemle DL.The perilipin family of structural lipid droplet proteins:stabilization of lipid droplets and control of lipolysis.J Lipid Res.2007;48(12):2547-2559.
    [7]Ducharme NA,Bickel PE.Minireview:Lipid droplets in lipogenesis and lipolysis.Endocrinology.2008;149(3):942-949.
    [8]Hayward GC,Fenech RK,Yang AJ,et al.The role of PLINprotein in healthy lipid storage and lipid droplet expansion.JPhysiol.2017;595(24):7273-7274..
    [9]杨勇,马长伟,赵春江,等.ATGL、CGI-58及其对脂肪水解的作用[J].中国油脂,2011,36(9):34-38.
    [10]Badin P,Loubiere C,Coonen M,et al.Regulation of skeletal muscle lipolysis and oxidative metabolism by the co-lipase CGI-58.J Lipid Res.2012;53(5):839-848.
    [11]MacPherson RE,Ramos SV,Vandenboom R,et al.Skeletal muscle PLIN proteins,ATGL and CGI-58,interactions at rest and following stimulated contraction.Am J Physiol Regul Integr Comp Physiol.2013;304(8):R644-R650.
    [12]Vigelso A,Gram M,Dybboe R,et al.The effect of age and unilateral leg immobilization for 2 weeks on substrate utilization during moderate-intensity exercise in human skeletal muscle.J Physiol.2016;594(8):2339-2358.
    [13]Bae JY,Woo J,Roh HT,et al.The effects of detraining and training on adipose tissue lipid droplet in obese mice after chronic high-fat diet.Lipids Health Dis.2017;16(1):13.
    [14]Lundby C,Jacobs RA.Adaptations of skeletal muscle mitochondria to exercise training.Exp Physiol.2016;101(1):17-22.
    [15]Yamaguchi T,Omatsu N,Matsushita S,Osumi T.et al.CGI-58 interacts with perilipin and is localized to lipid droplets-Possible involvement of CGI-58 mislocalization in Chanarin-Dorfman syndrome.J Biol Chem.2004;279(29):30490-30497.
    [16]Hughson RL,Faisal A.On the method of fitting cardiac output kinetics in severe exercise.Eur J Appl Physiol.2011;111(7):1529-1531.
    [17]Granneman JG,Moore HP,Krishnamoorthy R,et al.Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5(Abhd5)and adipose triglyceride lipase(Atgl).J Biol Chem.2009;284(50):34538-34544.
    [18]Souza SC,Muliro KV,Liscum L,et al.Modulation of hormone-sensitive lipase and protein kinase A-mediated lipolysis by perilipin A in an adenoviral reconstituted system.J Biol Chem.2002,277(10):8267-8272.
    [19]Kimmel AR,Brasaemle DL,McAndrews-Hill M,et al.Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins.JLipid Res.2010;51(3):468-471.
    [20]Wolins NE,Quaynor BK,Skinner JR,et al.OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization.Diabetes.2006;55(12):3418-3428.
    [21]Beylot M,Neggazi S,Hamlat N,et al.Perilipin 1 ablation in mice enhances lipid oxidation during exercise and does not impair exercise performance.Metabolism.2012;61(3):415-423.
    [22]Vigelso A,Gram M,Wiuff C,et al.Effects of immobilization and aerobic training on proteins related to intramuscular substrate storage and metabolism in young and older men.Eur J Appl Physiol.2016;116(3):481-494.
    [23]MacPherson RE,Peters SJ.Piecing together the puzzle of perilipin proteins and skeletal muscle lipolysis.Appl Physiol Nutr Metab.2015;40(7):641-651.
    [24]Badin PM,Langin D,Moro C.Dynamics of skeletal muscle lipid pools.Trends Endocrinol Metab.2013;24(12):607-615.
    [25]Bosma M,Minnaard R,Sparks L M,et al.The lipid droplet coat protein perilipin 5 also localizes to muscle mitochondria.Histochem Cell Biol.2012;137(2):205-216.
    [26]Bosma M,Sparks LM,Hooiveld GJ,et al.Overexpression of PLIN5 in skeletal muscle promotes oxidative gene expression and intramyocellular lipid content without compromising insulin sensitivity.Biochim Biophys Acta.2013;1831(4):844-852.
    [27]Kuramoto K,Okamura T,Yamaguchi T,et al.Perilipin 5,a lipid droplet-binding protein,protects heart from oxidative burden by sequestering fatty acid from excessive oxidation.JBiol Chem.2012;287(28):23852-23863.
    [28]Mason RR,Mokhtar R,Matzaris M,et al.PLIN5 deletion remodels intracellular lipid composition and causes insulin resistance in muscle.Mol Metab.2014;3(6):652-663.
    [29]Macpherson RE,Vandenboom R,Roy BD,et al.Skeletal muscle PLIN3 and PLIN5 are serine phosphorylated at rest and following lipolysis during adrenergic or contractile stimulation.Physiol Rep.2013;1(4):e84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700