局域表面等离子体共振效应在光催化技术中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Applications of Localized Surface Plasmon Resonance Effect in Photocatalysis
  • 作者:姚国英 ; 刘清路 ; 赵宗彦
  • 英文作者:Guoying Yao;Qinglu Liu;Zongyan Zhao;Faculty of Materials Science and Engineering, Kunming University of Science and Technology;
  • 关键词:局域表面等离子体共振 ; 光催化 ; 贵金属 ; 非贵金属 ; 缺陷半导体
  • 英文关键词:localized surface plasmon resonance;;photocatalysis;;noble metal;;non-noble metal;;defected semiconductor
  • 中文刊名:HXJZ
  • 英文刊名:Progress in Chemistry
  • 机构:昆明理工大学材料科学与工程学院;
  • 出版日期:2019-04-24
  • 出版单位:化学进展
  • 年:2019
  • 期:v.31;No.228
  • 基金:国家自然科学基金项目(No.21473082);; 云南省科技厅第18批中青年学术带头人后备人才项目(No.2015HB015)资助~~
  • 语种:中文;
  • 页:HXJZ201904011
  • 页数:20
  • CN:04
  • ISSN:11-3383/O6
  • 分类号:34-53
摘要
表面等离子激元是物理效应在光催化技术应用中的典型代表之一,作为新型光场调控技术为光催化技术的发展开辟了新的方向和思路,能够从全新的角度解决光催化技术的发展瓶颈,在过去十年来得到了广泛的研究。局域表面等离子体共振效应能够通过调节纳米颗粒的组成、形貌和介质环境等因素调控光催化体系的光谱响应范围。除此之外还能够通过增强光散射、热电子注入、诱导产生强烈的局域电场、加热周围环境等方法来增加光催化剂的氧化-还原反应速度、物质传输以及极化光催化材料表面的吸附分子,从而进一步增强材料的光催化性能。将这些优势集成到光催化材料体系中,能够显著提高传统光催化材料的太阳能转换效率,这是一个非常值得关注的发展方向。本文综述了局域表面等离子体共振效应在光催化技术中应用的基本原理、调控规律和应用等方面的研究进展,着重讨论了热电子的产生和迁移过程,贵金属中带间跃迁和表面等离子体共振效应的制约关系。最后,总结了表面等离子体光催化剂所面临的问题和挑战,并进行了相应的研究展望。
        The surface plasmon effect is a typical representative of the application of physical effects in photocatalysis technology. And as new control technology of light field, it has opened up new directions and new ideas for the development of photocatalysis technology. The bottleneck of the development of photocatalytic technology can be solved from a new perspective, and has been extensively studied in the past decade. The localized surface plasmon resonance effect can regulate the spectral response range of the photocatalytic system by adjusting the composition, morphology and medium environment of the nanoparticles. In addition, the photocatalyst redox reaction rate, mass transfer, and adsorbed molecules on the surface of the polarized photocatalytic material can be increased by enhancing light scattering, hot electron injection, inducing a strong local electric field, and heating the surrounding environment, thereby further enhancing the photocatalytic properties of the material. Integrating these advantages into a photocatalytic material system can significantly improve the solar energy conversion efficiency of conventional photocatalytic materials, which is a very interesting development direction. In this review, the basic principles, material composition, regulation and recent progress of surface plasmon resonance in photocatalytic systems are presented in detail. Not only the process of generation and migration of hot electrons, but also the relationship between interband transition and surface plasmon resonance in noble metals is discussed. Finally, the prospective and challenges for future development of plasmonic photocatalysis are summarized.
引文
[1] Fujishima A, Honda K. Nature, 1972, 238(5358): 37.
    [2] Ihara T, Miyoshi M, Iriyama Y, Matsumoto O, Sugihara S. Appl. Catal. B: Environ., 2003, 42(4): 403.
    [3] Xu M, Da P M, Wu H Y, Zhao D Y, Zheng G F. Nano Lett., 2012, 12(3): 1503.
    [4] Yin G N, Ma J X, Jiang H, Li J, Yang D, Gao F, Zeng J H, Liu Z K, Liu S D. ACS Appl. Mater. Interfaces, 2017, 9(12): 10752.
    [5] Long R, English N J. J. Phys. Chem. C, 2009, 113(21): 9423.
    [6] Long R, English N J. J. Phys. Chem. C, 2010, 114(27): 11984.
    [7] Mowbray D J, Martinez J I, Lastra J M G, Thygesen K S, Jacobsen K W. J. Phys. Chem. C, 2010, 113(28): 12301.
    [8] Song J N, Zheng M J, Yuan X L, Li Q, Wang F, Ma L G, You Y X, Liu S H, Liu P J, Jiang D K, Ma L, Shen W Z. J. Mater. Sci., 2017, 52(12): 6976.
    [9] Han X X, Huang J, Jing X X, Yang D Y, Lin H, Wang Z G, Li P, Chen Y. ACS Nano, 2018, 12(5): 4545.
    [10] Nishioka S, Hyodo J, Vequizo J J M, Yamashita S, Kumagai H, Kimoto K, Yamakata A, Yamazaki Y, Maeda K. ACS Catalysis, 2018, 8(8):7190.
    [11] Bessekhouad Y, Robert D, Weber J V. J. Photochem. Photobiol. A: Chem., 2004, 163(3): 569.
    [12] Wang Y J, Wang Q S, Zhan X Y, Wang F M, Safdar M, He J. Nanoscale, 2013, 5(18): 8326.
    [13] Guo L, Yang Z, Marcus K, Li Z, Luo B, Zhou L, Wang X, Du Y, Yang Y. Energy Environ. Sci., 2018, 11(1): 106.
    [14] Gong Y J, Lin J H, Wang X L, Shi G, Lei S D, Lin Z, Zou X L, Ye G L, Vajtai R, Yakobson B I. Nat. Mater., 2014, 13(12): 1135.
    [15] Zhang J, Wang J H, Chen P, Sun Y, Wu S, Jia Z Y, Lu X B, Yu H, Chen W, Zhu J Q. Adv. Mater., 2015, 28:1950
    [16] Chen H L, Wen X W, Zhang J, Wu T M, Gong Y J, Zhang X, Yuan J T, Yi C Y, Lou J, Ajayan P M. Nat. Commun., 2016, 7:12512.
    [17] Tada H, Suzuki F, Ito S, Akita T, Tanaka K, Kawahara T, Kobayashi H. J. Phys. Chem. B, 2002, 106(34): 8714.
    [18] Yan H J, Yang J H, Ma G J, Wu G P, Zong X, Lei Z B, Shi J Y, Li C. J. Catal., 2009, 266(2): 165.
    [19] Foo W J, Zhang C, Ho G W. Nanoscale, 2013, 5(2): 759.
    [20] An B, Zhang J Z, Cheng K, Ji P F, Wang C, Lin W B. J. Am. Chem. Soc., 2017, 139(10): 3834.
    [21] Chau L K, Lin Y F, Cheng S F, Lin T J. Sens. Actuator. B: Chem., 2006, 113(1): 100.
    [22] Homola J. Chem. Rev., 2008, 108(2): 462.
    [23] Zhang S H, Huang Q, Zhang L J, Zhang H, Han Y B, Sun Q, Cheng Z X, Qin H Z, Dou S X, Li Z. Nanoscale, 2018, 10(7): 3130.
    [24] Wang F F, Wang H J, Liu X Y, Wu D P, Jiang K, Li Q, Xu D S. Adv. Energy Mater., 2018, 8(20): 1800136.
    [25] Kardarian K, Nunes D, Maria Sberna P, Ginsburg A, Keller D A, Vaz Pinto J, Deuermeier J, Anderson A Y, Zaban A, Martins R, Fortunato E. Sol. Energy Mater. Sol. Cells, 2016, 147:27.
    [26] Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T. J. Am. Chem. Soc., 2008, 130(5): 1676.
    [27] Wang P, Huang B B, Qin X Y, Zhang X Y, Dai Y, Wei J Y, Whangbo M H. Angew. Chem. Int. Edi., 2008, 47(41): 7931.
    [28] Wang P, Huang B B, Zhang X Y, Qin X Y, Jin H, Dai Y, Wang Z Y, Wei J Y, Zhan J, Wang S Y, Wang J P, Whangbo M H. Chem. -A Eur. J., 2009, 15(8): 1821.
    [29] Chen X, Zhu H Y, Zhao J C, Zheng Z F, Gao X P. Angew. Chem. Int. Edit., 2008, 47(29): 5353.
    [30] Jain P K, Lee K S, El-Sayed I H, El-Sayed M A. J. Phys. Chem. B, 2006, 110(14): 7238.
    [31] Linic S, Christopher P, Ingram D B. Nat. Mater., 2011, 10(12): 911.
    [32] Zhou C G, Wang S M, Zhao Z Y, Shi Z, Yan S C, Zou Z G. Adv. Funct. Mater., 2018, 28(31): 1801214.
    [33] Yang J H, Guo Y Z, Jiang R B, Qin F, Zhang H, Lu W Z, Wang J F, Yu J C. J. Am. Chem. Soc., 2018, 140(27): 8497.
    [34] Patnaik S, Swain G, Parida K M. Nanoscale, 2018, 10(13): 5950.
    [35] Zeng Z P, Li T, Li Y B, Dai X C, Huang M H, He Y H, Xiao G C, Xiao F X. J. Mater. Chem. A, 2018, DOI: 10.1039/C8TA08841A.
    [36] Lou Z Z, Wang Z Y, Huang B B, Dai Y. ChemCatChem, 2014, 6(9): 2456.
    [37] Wang Z Y, Liu Y Y, Huang B B, Dai Y, Lou Z Z, Wang G, Zhang X Y, Qin X Y. Phys. Chem. Chem. Phys., 2014, 16(7): 2758.
    [38] Liu L Q, Zhang X N, Yang L F, Ren L T, Wang D F, Ye J H. Nat. Sci. Rev., 2017, 4(5): 761.
    [39] Zhang N, Han C, Fu X Z, Xu Y J. Chem, 2018, 4(8): 1832.
    [40] Barnes W L, Dereux A, Ebbesen T W. Nature, 2003, 424: 824.
    [41] Ding S Y, Yi J, Li J F, Ren B, Wu D Y, Panneerselvam R, Tian Z Q. Nat. Rev. Mater., 2016, 1: 16021.
    [42] Kelly K L, Coronado E, Zhao L L, Schatz G C. J. Phys. Chem. B, 2003, 107(3): 668.
    [43] Sambles J R, Bradbery G W, Yang F. Contemp. Phys., 1991, 32(3): 173.
    [44] Eustis S, El-Sayed M A. Chem. Soc. Rev., 2006, 35(3): 209.
    [45] Barolo G, Livraghi S, Chiesa M, Paganini M C, Giamello E. J. Phys. Chem. C, 2012, 116(39): 20887.
    [46] Linic S, Aslam U, Boerigter C, Morabito M. Nat. Mater., 2015, 14(6): 567.
    [47] Low J X, Qiu S Q, Xu D F, Jiang C J, Cheng B. Appl. Surf. Sci., 2018, 434: 423.
    [48] Li M, Xing Z P, Jiang J J, Li Z Z, Yin J W, Kuang J Y, Tan S Y, Zhu Q, Zhou W. J. Taiwan Inst. Chem. Eng., 2018, 82: 198.
    [49] Tanaka A, Hashimoto K, Kominami H. Chem. Commun., 2017, 53(35): 4759.
    [50] Jiao Z B, Shang M D, Liu J M, Lu G X, Wang X S, Bi Y P. Nano Energy, 2017, 31: 96.
    [51] Cushing S K, Li J, Meng F, Senty T R, Suri S, Zhi M, Li M, Bristow A D, Wu N. J Am Chem Soc, 2012, 134(36): 15033.
    [52] Lu B, Liu A P, Wu H P, Shen Q P, Zhao T Y, Wang J S. Langmuir, 2016, 32(12): 3085.
    [53] Li J T, Cushing S K, Bright J, Meng F, Senty T R, Zheng P, Bristow A D, Wu N Q. ACS Catal., 2014, 3(1): 47.
    [54] Ma X C, Dai Y, Yu L, Huang B B. Light: Sci. Appl., 2016, 5: e16017.
    [55] Christopher P, Xin H, Linic S. Nat. Chem., 2011, 3: 467.
    [56] Liu L C, Ji Z Y, Zou W X, Gu X R, Deng Y, Gao F, Tang C J, Dong L. ACS Catal., 2013, 3(9): 2052.
    [57] Meng X G, Wang T, Liu L Q, Ouyang S X, Li P, Hu H L, Kako T, Iwai H, Tanaka A, Ye J H. Angew. Chem. Int. Edit., 2014, 53(43): 11478.
    [58] Liu H M, Meng X G, Dao T D, Zhang H B, Li P, Chang K, Wang T, Li M, Nagao T, Ye J H. Angew. Chem. Int. Edit., 2015, 54(39): 11545.
    [59] Schelm S, Smith G B. Appl. Phys. Lett., 2003, 82(24): 4346.
    [60] Chen C J, Chen D H. Chem. Eng. J., 2012, 180(6): 337.
    [61] Wang H, Tam F, Grady N K, Halas N J. J. Phys. Chem. B, 2005, 109(39): 18218.
    [62] Pakizeh T. J. Phys. Chem. C, 2011, 115(44): 21826.
    [63] Zhang Z S, Liu L H, Fang W H, Long R, Tokina M V, Prezhdo O V. Chem, 2018, 4(5): 1112.
    [64] Long R, Prezhdo O V. J. Am. Chem. Soc., 2014, 136(11): 4343.
    [65] Powell C J. Phys. Rev. Lett., 1965, 15(22): 852.
    [66] Powell C J. Phys. Rev., 1968, 175(3): 972.
    [67] Hagemann H J, Gudat W, Kunz C. J. Opt. Soc. Am., 1975, 65(6): 742.
    [68] Sugawa K, Yamaguchi D, Tsunenari N, Uchida K, Tahara H, Takeda H, Tokuda K, Jin S, Kusaka Y, Fukuda N. ACS Appl. Mater. Interfaces, 2016, 9(1): 750.
    [69] Sugawa K, Tsunenari N, Takeda H, Fujiwara S, Akiyama T, Honda J, Igari S, Inoue W, Tokuda K, Takeshima N, Watanuki Y, Tsukahara S, Takase K, Umegaki T, Kojima Y, Nishimiya N, Fukuda N, Kusaka Y, Ushijima H, Otsuki J. Langmuir, 2017, 33(23): 5685.
    [70] Mcmahon J M, Schatz G C, Gray S K. Phys. Chem. Chem. Phys., 2013, 15(15): 5415.
    [71] Xiao F X, Zeng Z P, Liu B. J. Am. Chem. Soc., 2015, 137(33): 10735.
    [72] Gao Y, Lin J Y, Zhang Q Z, Yu H, Ding F, Xu B T, Sun Y G, Xu Z H. Appl. Catal. B: Environ., 2018, 224: 586.
    [73] Cheng W R, Su H, Tang F M, Che W, Huang Y Y, Zheng X S, Yao T, Liu J K, Hu F C, Jiang Y, Liu Q H, Wei S Q. J. Mater. Chem. A, 2017, 5(37): 19649.
    [74] Kumari G, Zhang X Q, Devasia D, Heo J, Jain P K. ACS Nano, 2018, 12(8): 8330.
    [75] Liu L Q, Ouyang S X, Ye J H. Angew. Chem., 2013, 125(26): 6821.
    [76] Liu L Q, Dao T D, Kodiyath R, Kang Q, Abe H, Nagao T, Ye J H. Adv. Funct. Mater., 2014, 24(48): 7754.
    [77] Zhu M S, Cai X Y, Fujitsuka M, Zhang J Y, Majima T. Angew. Chem. Int. Edit., 2017, 129(8): 2096.
    [78] Zhang Z Y, Cao S W, Liao Y S, Xue C. Appl. Catal. B: Environ., 2015, 162: 204.
    [79] Verma P, Yuan K, Kuwahara Y, Mori K, Yamashita H. Appl. Catal. B: Environ., 2018, 223:10.
    [80] Zhou Y X, Wang D S, Li Y D. Chem. Commun., 2014, 50(46): 6141.
    [81] Cui Q L, Shen G Z, Yan X H, Li L D, M?hwald H, Bargheer M. ACS Appl. Mater. Interfaces, 2014, 6(19): 17075.
    [82] Dai L W, Song L P, Huang Y J, Zhang L, Lu X F, Zhang J W, Chen T. Langmuir, 2017, 33(22): 5378.
    [83] Pellarin M, Issa I, Langlois C, Lebeault M A, Ramade J, Lermé J, Broyer M, Cottancin E J. J. Phys. Chem. C, 2015, 119(9): 5002.
    [84] Govorov A O, Zhang H, Gun’ko Y K. J. Phys. Chem. C, 2013, 117(32): 16616.
    [85] Liu L Q, Li P, Adisak B, Ouyang S, Umezawa N, Ye J H, Kodiyath R, Tanabe T, Ramesh G V, Ueda S. J. Mater. Chem. A, 2014, 2(25): 9875.
    [86] Osowiecki W T, Ye X C, Satish P, Bustillo K C, Clark E L, Alivisatos A P. J. Am. Chem. Soc., 2018, 140(27): 8569.
    [87] Wang P, Huang B B, Lou Z Z, Zhang X Y, Qin X Y, Dai Y, Zheng Z K, Wang X N. Chem.-A Eur. J., 2009, 16(2): 538.
    [88] Cheng H F, Huang B B, Dai Y, Qin X Y, Zhang X Y. Langmuir, 2010, 26(9): 6618.
    [89] Liang X Z, Wang P, Li M M, Zhang Q Q, Wang Z Y, Dai Y, Zhang X Y, Liu Y Y, Whangbo M H, Huang B B. Appl. Catal. B: Environ., 2018, 220: 356.
    [90] Ye L Q, Liu J Y, Gong C Q, Tian L H, Peng T Y, Zan L. ACS Catal., 2012, 2(8): 1677.
    [91] Zhang P Y, Song T, Wang T T, Zeng H P. RSC Adv., 2017, 7(29): 17873.
    [92] Zhang P Y, Song T, Wang T T, Zeng H P. Appl. Catal. B: Environ., 2018, 225:172.
    [93] Zhang P Y, Song T, Wang T T, Zeng H P. Int. J. Hydrogen Energy, 2017, 42(21): 14511.
    [94] Zhang P Y, Wang T T, Zeng H P. Appl. Surf. Sci., 2017, 391: 404.
    [95] Gavade N L, Babar S B, Kadam A N, Gophane A D, Garadkar K M. Ind. Eng. Chem. Res., 2017, 56(49): 14489.
    [96] Yang L, Pillai S, Green M A. Sci. Rep., 2015, 5: 11852.
    [97] He W J, Sun Y J, Jiang G M, Huang H W, Zhang X M, Dong F. Appl. Catal. B: Environ., 2018, 232: 340.
    [98] He W J, Sun Y J, Jiang G M, Li Y H, Zhang X M, Zhang Y X, Zhou Y, Dong F. Appl. Catal. B: Environ., 2018, 239; 619.
    [99] Lv Y H, Cao X F, Jiang H Y, Song W J, Chen C C, Zhao J C. Appl. Catal. B: Environ., 2016, 194: 150.
    [100] Cheng Y H, Lin Y J, Xu J P, He J, Wang T Z, Yu G J, Shao D W, Wang W H, Lu F, Li L, Du X, Wang W C, Liu H, Zheng R K. Appl. Surf. Sci., 2016, 366: 120.
    [101] Nie J, Patrocinio A O T, Hamid S, Sieland F, Sann J, Xia S, Bahnemann D W, Schneider J. Phys. Chem. Chem. Phys., 2018, 20(7): 5264.
    [102] Toudert J, Serna R, Jiménez De Castro M. J. Phys. Chem. C, 2012, 116(38): 20530.
    [103] Sun Y J, Zhao Z W, Zhang W D, Gao C F, Zhang Y X, Dong F. J. Colloid Interface Sci., 2017, 485: 1.
    [104] Li X W, Zhang W D, Cui W, Sun Y J, Jiang G M, Zhang Y X, Huang H W, Dong F. Appl. Catal. B: Environ., 2018, 221: 482.
    [105] Wang H, Zhang W D, Li X W, Li J Y, Cen W L, Li Q Y, Dong F. Appl. Catal. B: Environ., 2018, 225: 218.
    [106] Yang F, Zhu X M, Fang J Z, Chen D D, Feng W H, Fang Z Q. Ceram. Int., 2018, 44(6): 6918.
    [107] Chen D D, Wu S X, Fang J Z, Lu S Y, Zhou G Y, Feng W H, Yang F, Chen Y, Fang Z Q. Sep. Purif. Technol., 2018, 193: 232.
    [108] Hu J L, Chen L, Lian Z C, Cao M, Li H J, Sun W B, Tong N L, Zeng H B. J. Phys. Chem. C, 2012, 116(29): 15584.
    [109] Ahmadivand A, Golmohammadi S. Opt. Laser Technol., 2015, 66: 9.
    [110] Ghori M Z, Veziroglu S, Hinz A, Shurtleff B B, Polonskyi O, Strunskus T, Adam J, Faupel F, Aktas O C. ACS Appl. Nano Mater., 2018, DOI: 10.1021/acsanm.8b00853.
    [111] Liu Y, Liu M X, Swihart M T. J. Phys. Chem. C, 2017, 121(25): 13435.
    [112] Lin R, Wan J W, Xiong Y, Wu K L, Cheong W C, Zhou G, Wang D S, Peng Q, Chen C, Li Y D. J. Am. Chem. Soc., 2018, 140(29): 9078.
    [113] Song G S, Shen J, Jiang F R, Hu R G, Li W Y, An L, Zou R J, Chen Z G, Qin Z Y, Hu J Q. ACS Appl. Mater. Interfaces, 2014, 6(6): 3915.
    [114] Gordon T R, Paik T, Klein D R, Naik G V, Caglayan H, Boltasseva A, Murray C B. Nano Lett., 2013, 13(6): 2857.
    [115] Naik G V, Liu J J, Kildishev A V, Shalaev V M, Boltasseva A. Proc. Natl. Acad. Sci. U. S. A., 2012, 109(23): 8834.
    [116] Kriegel I, Jiang C, Rodríguezfernández J, Schaller R D, Talapin D V, Da C E, Feldmann J. J. Am. Chem. Soc., 2012, 134(3): 1583.
    [117] Ren K, Yin P F, Zhou Y Z, Cao X Z, Dong C K, Cui L, Liu H, Du X W. Small, 2017, 13(36): 1700867.
    [118] Zhu D X, Tang A W, Kong Q H, Zeng B, Yang C H, Teng F. J. Phys. Chem. C, 2017, 121(29): 15922.
    [119] Shu Q W, Yang M J. J. Alloys Compd., 2016, 660: 361.
    [120] Van Der Stam W, Berends A C, Rabouw FT, Willhammar T, Ke X, Meeldijk J D, Bals S, De Mello Donega C. Chem. Mater., 2015, 27(2): 621.
    [121] Lee S, Baek S, Park J P, Park J H, Hwang D Y, Kwak S K, Kim S W. Chem. Mater., 2016, 28(10): 3337.
    [122] Maiti P S, Ganai A K, Bar-Ziv R, Enyashin A N, Houben L, Bar Sadan M. Chem. Mater., 2018, 30(14): 4489.
    [123] Niezgoda J S, Yap E, Keene J D, Mcbride J R, Rosenthal S J. Nano Lett., 2014, 14(6): 3262.
    [124] Su Z H, Sun K W, Han Z L, Liu F Y, Lai Y Q, Li J, Liu Y X. J. Mater. Chem., 2012, 22(32): 16346.
    [125] Li Y W, Ling W D, Han Q F, Kim T W, Shi W Z. J. Alloys Compd., 2015, 633: 347.
    [126] Lu X T, Zhuang Z B, Peng Q, Li Y D. Chem. Commun., 2011, 47(11): 3141.
    [127] Li M, Zhou W-H, Guo J, Zhou Y L, Hou Z L, Jiao J, Zhou Z J, Du Z L, Wu S X. J. Phys. Chem. C, 2012, 116(50): 26507.
    [128] Lou Z Z, Gu Q, Xu L, Liao Y S, Xue C. Chem.-Asian J., 2015, 10(6): 1291.
    [129] Lou Z Z, Xue C. CrystEngComm, 2016, 18(43): 8406.
    [130] Pan L, Zhang J W, Jia X, Ma Y H, Zhang X W, Wang L, Zou J J. Chin. J. Catal., 2017, 38(2): 253.
    [131] Lou Z Z, Zhu M S, Yang X G, Zhang Y, Whangbo M H, Li B J, Huang B B. Appl. Catal. B: Environ., 2018, 226: 10.
    [132] Tan X J, Wang L Z, Cheng C, Yan X F, Shen B, Zhang J L. Chem. Commun., 2016, 52(14): 2893.
    [133] Cheng H F, Kamegawa T, Mori K, Yamashita H. Angew. Chem., 2014, 126(11): 2954.
    [134] Yin H B, Kuwahara Y, Mori K, Cheng H F, Wen M C, Yamashita H. J. Mater. Chem. A, 2017, 5(19): 8946.
    [135] Greenberg B L, Ganguly S, Held J T, Kramer N J, Mkhoyan K A, Aydil E S, Kortshagen U R. Nano Lett., 2015, 15(12): 8162.
    [136] Cheng H F, Wen M C, Ma X C, Kuwahara Y, Mori K, Dai Y, Huang B B, Yamashita H. J. Am. Chem. Soc., 2016, 138(29): 9316.
    [137] Milla M J, Barho F, González-Posada F, Cerutti L, Bomers M, Rodriguez J B, Tournié E, Taliercio T. Nanotechnology, 2016, 27(42): 425201.
    [138] Chen L, Sun H H, Zhao Y J, Zhang Y, Wang Y X, Liu Y, Zhang X, Jiang Y H, Hua Z, Yang J H. RSC Adv., 2017, 7(27): 16553.
    [139] Himstedt R, Rusch P, Hinrichs D, Kodanek T, Lauth J, Kinge S, Siebbeles L D A, Dorfs D. Chem. Mater., 2017, 29(17): 7371.
    [140] Wang Z L, Quan X J, Zhang Z M, Cheng P. J. Quant. Spectrosc. Radiat. Transf., 2018, 205: 291.
    [141] Wang H J, Yang K H, Hsu S C, Huang M H. Nanoscale, 2016, 8(2): 965.
    [142] Ghodselahi T, Vesaghi M A. Physica B, 2011, 406(13): 2678.
    [143] Seh Z W, Liu S H, Low M, Zhang S Y, Liu Z L, Mlayah A, Han M Y. Adv. Mater., 2012, 24(17): 2310.
    [144] Yao G Y, Liu Q L, Zhao Z Y. Catalysts, 2018, 8(6): 236.
    [145] Takahata R, Yamazoe S, Koyasu K, Imura K, Tsukuda T. J. Am. Chem. Soc., 2018, 140(21): 6640.
    [146] Mu H W, Lv J W, Liu C, Sun T, Chu P K, Zhang J P. Opt. Commun., 2017, 402: 216.
    [147] Han C, Quan Q, Chen H M, Sun Y, Xu Y J. Small, 2017, 13(14): 1602947.
    [148] Hong J W, Wi D H, Lee S U, Han S W. J. Am. Chem. Soc., 2016, 138(48): 15766.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700