氯吡苯脲和O_3处理‘秦美’猕猴桃采后生理品质与电学特性的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Relationship between Postharvest Physiology, Quality and Electrical Properties of Kiwifruit Treated Preharvest with 1-(2-Chloropyridin-4-yl)-3-phenylurea and Postharvest with Ozone
  • 作者:李琳 ; 罗安伟 ; 李圆圆 ; 苏苗 ; 白俊青 ; 李锐 ; 方沂蒙 ; 马惠玲
  • 英文作者:LI Lin;LUO Anwei;LI Yuanyuan;SU Miao;BAI Junqing;LI Rui;FANG Yimeng;MA Huiling;College of Food Science and Engineering, Northwest A & F University;College of Life Sciences, Northwest A & F University;
  • 关键词:氯吡苯脲 ; 臭氧 ; 猕猴桃 ; 生理品质 ; 电学特性
  • 英文关键词:1-(2-chloropyridin-4-yl)-3-phenylurea;;ozone;;kiwifruit;;physiological quality;;electrical properties
  • 中文刊名:SPKX
  • 英文刊名:Food Science
  • 机构:西北农林科技大学食品科学与工程学院;西北农林科技大学生命科学学院;
  • 出版日期:2019-03-15
  • 出版单位:食品科学
  • 年:2019
  • 期:v.40;No.594
  • 基金:陕西省农业科技创新与攻关项目(2015NY051);; 陕西省重点研发计划农业领域重点项目(2018ZDXM-NY-056);; 杨凌示范区产学研用协同创新重大项目(2018CXY-04);; 杨凌示范区农业科技示范推广能力提升项目(2018-GG-21)
  • 语种:中文;
  • 页:SPKX201905038
  • 页数:9
  • CN:05
  • ISSN:11-2206/TS
  • 分类号:266-274
摘要
为从宏观电学特性方面探究采后O_3处理是否可以减轻采前氯吡苯脲(1-(2-chloropyridin-4-yl)-3-phenylurea,CPPU)处理对‘秦美’猕猴桃产生的负面影响,以盛花期后28 d使用20 mg/L CPPU蘸果处理,采后贮藏过程中每隔15 d用70 mg/m~3 O_3处理2 h的秦美猕猴桃为试材,在(0±1)℃、相对湿度90%~95%条件下贮藏,研究贮藏期间生理指标、品质指标与电学特性之间的关系。结果表明:CPPU+O_3处理组过氧化氢酶活力、VC含量、可滴定酸质量分数整体高于CPPU处理组,呼吸速率、多聚半乳糖醛酸酶、纤维素酶活力低于CPPU处理组,采后O_3处理可减轻CPPU对猕猴桃产生的负面影响。在选定的24个频率中,CPPU处理的猕猴桃特征频率为0.1 kHz,对照组和CPPU+O_3处理的猕猴桃特征频率均为3 980 kHz。通过宏观电学特性判断,采后O_3处理能减轻采前CPPU处理对‘秦美’猕猴桃品质和生理方面产生的负面影响。
        In order to investigate whether postharvest O_3 treatment can counteract the negative effect of preharvest 1-(2-chloropyridin-4-yl)-3-phenylurea(CPPU) treatment on kiwifruits based on macroscopic electrical properties, the relationship between postharvest physiology, quality and electrical properties was studied on ‘Qinmei' kiwifruit treated with 20 mg/L CPPU at 28 days after flowering and then treated with 70 mg/m~3 O_3 for 2 hours every 15 days during postharvest storage at(0 ± 1) ℃ and relative humidity of 90%–95%. The results showed that CPPU + O_3 treatment led to significantly higher catalase(CAT) activity, VC and titratable acid(TA) content and significantly lower respiratory rate, polygalacturonase(PG) and cellulase(Cx) activities than did CPPU treatment alone. Postharvest O_3 treatment could weaken the negative effect of CPPU treatment on kiwifruit. The characteristic frequency for CPPU-treated kiwifruit was 0.1 kHz among the selected 24 frequencies, while the characteristic frequency for both control and CPPU + O_3 treated kiwifruit was 3 980 kHz, which further indicates that O_3 can weaken the negative effect of CPPU treatment on kiwifruit through macroscopic electrical characteristics.
引文
[1] AINALIDOU A, KARAMANOLI K, MENKISSOGLU-SPIROUDI U, et al. CPPU treatment and pollination: their combined effect on kiwifruit growth and quality[J]. Scientia Horticulturae, 2015, 193: 147-154. DOI:10.1016/j.scienta.2015.07.011.
    [2] BANO S, SCRIMGEOUR F. The export growth and revealed comparative advantage of the New Zealand kiwifruit industry[J]. International Business Research, 2012, 5(2): 73-82. DOI:10.5539/ibr.v5n2p73.
    [3] CRUZ-CASTILLO J G, BALDICCHI A, FRIONI T, et al. Preanthesis CPPU low dosage application increases ‘Hayward’ kiwifruit weight without affecting the other qualitative and nutritional characteristics[J]. Food Chemistry, 2014, 158: 224-228. DOI:10.1016/j.foodchem.2014.01.131.
    [4] ZHANG C X, WHITING M D. Improving ‘Bing’ sweet cherry fruit quality with plant growth regulators[J]. Scientia Horticulturae, 2011, 127(3): 341-346. DOI:10.1016/j.scienta.2010.11.006.
    [5] BLANK R H, RICHARDSON A C, OSHIMA K, et al. Effect of a forchlorfenuron dip on kiwifruit fruit size[J]. New Zealand Journal of Crop and Horticultural Science, 1992, 20(1): 73-78. DOI:10.1080/01140671.1992.10422328.
    [6] IWAHORI S, TOMINAGA S, YAMASAKI T. Stimulation of fruit growth of kiwifruit, Actinidia chinensis Planch., by N-(2-chloro-4-pyridyl)-N’-phenylurea, a diphenylurea-derivative cytokinin[J]. Scientia Horticulturae, 1988, 35(1/2): 109-115. DOI:10.1016/0304-4238(88)90042-8.
    [7] PATTERSON K J, MASON K A, GOULD K S. Effects of CPPU (N-(2-chloro-4-pyridyl)-N’-phenylurea) on fruit growth, maturity, and storage quality of kiwifruit[J]. New Zealand Journal of Crop and Horticultural Science, 1993, 21(3): 253-261. DOI:10.1080/01140671.1993.9513777.
    [8] KIM J G, TAKAMI Y, MIZUGAMI T, et al. CPPU application on size and quality of hardy kiwifruit[J]. Scientia Horticulturae, 2006, 110(2): 219-222. DOI:10.1016/j.scienta.2006.06.017.
    [9] COOPER T, GONZáLEZ L, RETAMALES J. Effects of CPPU on quality and postharvest life of kiwifruit[J]. Acta Horticulturae, 2008, 796: 167-171. DOI:10.17660/ActaHortic.2008.796.20.
    [10]王玮,靳蜜静,饶景萍.CPPU处理对采后猕猴桃品质及耐冷性的影响[J].北方园艺, 2016(1): 111-117. DOI:10.11937/bfyy.201601029.
    [11]苏玲,王安建,朱广成,等.臭氧在果蔬贮藏保鲜中的应用[J].保鲜与加工, 2002, 2(5): 33. DOI:10.3969/j.issn.1009-6221.2002.05.013.
    [12]庞斌,杨中平,胡志超,等.臭氧水处理对草莓腐烂及品质的影响[J].中国农机化, 2010(1): 88-92. DOI:10.3969/j.issn.1006-7205.2010.01.021.
    [13]齐馨,何玲,郭宇欢,等.臭氧处理对“红地球”葡萄的防腐效果[J].陕西农业科学, 2017, 63(3): 25-30. DOI:10.3969/j.issn.0488-5368.2017.03.008.
    [14]梁芸志,季丽丽,陈存坤,等.臭氧处理对采后黄瓜贮藏品质的影响[J].食品安全质量检测学报, 2017, 8(5): 1559-1564. DOI:10.3969/j.issn.2095-0381.2017.05.007.
    [15]周慧娟,乔勇进,王海宏,等.臭氧处理对宫川柑橘保鲜效果的影响[J].保鲜与加工, 2010, 10(3): 12-16. DOI:10.3969/j.issn.1009-6221.2010.03.005.
    [16]韩强,郜海燕,陈杭君,等.臭氧处理对桑葚采后生理品质的影响及机理[J].中国食品学报, 2016, 16(10): 147-153. DOI:10.16429/j.1009-7848.2016.10.020.
    [17]胥芳,张立彬,计时鸣,等.基于介电特性的水果品质无损检测方法研究[J].浙江工业大学学报, 2001, 29(3): 230-234. DOI:10.3969/j.issn.1006-4303.2001.03.005.
    [18]李子文,张海红,马雪莲,等.灵武长枣的成熟度与其电学特性关系研究[J].食品科技, 2015, 36(10): 286-290. DOI:10.13684/j.cnki.spkj.2015.10.060.
    [19]安慧珍,马惠玲,任小林.苹果果实贮藏期间电学参数与品质指标的关系[J].食品科学, 2013, 34(2): 298-302.
    [20]孔繁荣,郭文川.发育后期苹果的介电特性与理化特性的关系[J].食品科学, 2016, 37(9): 13-17. DOI:10.7506/spkx.1002-6630-201609003.
    [21]刘亚平,刘兴华,李红波.葡萄冷藏中电学参数与质地特性变化规律[J].农业工程学报, 2011, 27(10): 343-348. DOI:10.3969/j.issn.1002-6819.2011.10.060.
    [22] SOLTANI M, ALIMARDANI R, OMID M. Evaluating banana ripening status from measuring dielectric properties[J]. Journal of Food Engineering, 2011, 105(4): 625-631. DOI:10.1016/j.jfoodeng.2011.03.032.
    [23] LIU M, JIA Z H, YAO Y B, et al. The model of measuring melons’ sugar based on resistance and capacitance[C]//Fourth International Workshop on Advanced Computational Intelligence, Wuhan, 2011: 34-36. DOI:10.1109/IWACI.2011.6159969.
    [24]唐燕.猕猴桃和桃电学特性和生理特性关系研究[D].杨凌: 西北农林科技大学, 2011: 16.
    [25] LI Fujun, ZHANG Xinhua, SONG Baicheng, et al. Combined effects of 1-MCP and MAP on the fruit quality of pear (Pyrus bretschneideri Reld cv. Laiyang) during cold storage[J]. Scientia Horticulturae, 2013, 164: 544-551. DOI:10.1016/j.scienta.2013.10.018.
    [26] BRUMMELL D A, DAL CIN V, CRISOSTO C H, et al. Cell wall metabolism during maturation, ripening and senescence of peach fruit[J]. Journal of Experimental Botany, 2004, 55: 2029-2039. DOI:10.1093/jxb/erh227.
    [27] CARRINGTON C M S, GREVE L C, LABAVITCH J M. Cell wall metabolism in ripening fruit (VI. effect of the antisense polygalacturonase gene on cell wall changes accompanying ripening in transgenic tomatoes)[J]. Plant Physiology, 1993, 103(2): 429-434. DOI:10.1104/pp.103.2.429.
    [28]罗自生.热处理诱导采后柿果抗冷性机理的研究[D].杭州: 浙江大学, 2002: 66-67.
    [29]曹建康,姜微波,赵玉梅.果蔬采后生理生化实验指导[M].北京: 中国轻工业出版社, 2007: 37-39.
    [30]陈金印,陈明,甘霖.1-M C P处理对冷藏‘金魁’猕猴桃果实采后生理和品质的影响[J].江西农业大学学报, 2005, 27(1): 1-5. DOI:10.3969/j.issn.1000-2286.2005.01.001.
    [31]杨青珍,饶景萍,王玉萍.‘徐香’猕猴桃采收后逐步降温处理对果实冷害、品质和活性氧代谢的影响[J].园艺学报, 2013, 40(4): 651-662.
    [32]王亚楠,胡花丽,张璇,等.气调贮藏对‘红阳’猕猴桃果胶含量及相关酶活的影响[J].食品与发酵工业, 2013, 39(8): 207-211.
    [33]张海新,及华.果实成熟软化与相关的酶学研究[J].食品科技,2008,33(11): 57-60. DOI:10.3969/j.issn.1005-9989.2008.11.016.
    [34]阚娟,刘俊,金昌海.桃果实成熟软化与细胞壁降解相关糖苷酶及乙烯生物合成的关系[J].中国农业科学, 2012, 45(14): 2931-2938. DOI:10.3864/j.issn.0578-1752.2012.14.016.
    [35]易春,王中炎,袁飞荣,等.大果灵在翠玉称猴桃上应用效果的评价[J].湖南农业科学, 2007(3): 100-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700