Mechanisms of Transforming CH_x to CO on Ni(111) Surface by Density Functional Theory
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanisms of Transforming CH_x to CO on Ni(111) Surface by Density Functional Theory
  • 作者:Yingzhe ; Yu ; Hao ; Lei ; Lingguang ; Wang ; Minhua ; Zhang
  • 英文作者:Yingzhe Yu;Hao Lei;Lingguang Wang;Minhua Zhang;Key Laboratory for Green Chemical Technology of Ministry of Education,R&D Center for Petrochemical Technology,Tianjin University;Collaborative Innovation Center of Chemical Science and Engineering (Tianjin);
  • 英文关键词:Density functional theory;;CH_x transformation;;CO;;Ni(111)
  • 中文刊名:TJDY
  • 英文刊名:天津大学学报(英文版)
  • 机构:Key Laboratory for Green Chemical Technology of Ministry of Education,R&D Center for Petrochemical Technology,Tianjin University;Collaborative Innovation Center of Chemical Science and Engineering (Tianjin);
  • 出版日期:2019-08-13
  • 出版单位:Transactions of Tianjin University
  • 年:2019
  • 期:v.25
  • 语种:英文;
  • 页:TJDY201904004
  • 页数:10
  • CN:04
  • ISSN:12-1248/T
  • 分类号:32-41
摘要
To elucidate feasible routes of producing CO from CH _(3 )and unravel the effect of adsorbed O on CH _(x )transformation,the reactivity of CH _x(x=1–3)with and without the assistance of adsorbed atomic O on Ni(111)was explored using density functional theory calculations.The adsorption energies of CH _x(x=0–3)were found to be significantly reduced on an O-preadsorbed Ni(111)surface compared to a pure surface.Furthermore,O-assisted one-step dehydrogenation of CH _x(x=1–3)features energy barriers and thus is difficult to proceed.In terms of energy,the direct dissociation of CH _(3 )is favorable,except for the last CH dehydrogenation,which is energy intensive.Interestingly,in O-assisted two-step CH transformation to CO via CHOintermediate,the barrier is dramatically lowered.The successive dehydrogenations of CH _(x )O(x=1–3)were also found to be a route for CO formation.Finally,two possible pathways from CH _(3 )to CO are proposed:(a)CH _3→CH _2→CH→CHO→CO;(b)CH _3→CH _(3 )O→CH _(2 )O→CHO→CO.
        To elucidate feasible routes of producing CO from CH _(3 )and unravel the effect of adsorbed O on CH _(x )transformation,the reactivity of CH _x(x=1–3)with and without the assistance of adsorbed atomic O on Ni(111)was explored using density functional theory calculations.The adsorption energies of CH _x(x=0–3)were found to be significantly reduced on an O-preadsorbed Ni(111)surface compared to a pure surface.Furthermore,O-assisted one-step dehydrogenation of CH _x(x=1–3)features energy barriers and thus is difficult to proceed.In terms of energy,the direct dissociation of CH _(3 )is favorable,except for the last CH dehydrogenation,which is energy intensive.Interestingly,in O-assisted two-step CH transformation to CO via CHOintermediate,the barrier is dramatically lowered.The successive dehydrogenations of CH _(x )O(x=1–3)were also found to be a route for CO formation.Finally,two possible pathways from CH _(3 )to CO are proposed:(a)CH _3→CH _2→CH→CHO→CO;(b)CH _3→CH _(3 )O→CH _(2 )O→CHO→CO.
引文
1.Lunsford JH(2000)Catalytic conversion of methane to more useful chemicals and fuels:a challenge for the twenty-fi rst century.Catal Today 63(2-4):165-174
    2.Gharibi M,Zangeneh FT,Yaripour F et al(2012)Nanocatalysts for conversion of natural gas to liquid fuels and petrochemical feedstocks.Appl Catal A 443-444:8-26
    3.Caballero A,Pérez PJ(2013)Methane as raw material in synthetic chemistry:the fi nal frontier.Chem Soc Rev 42:8809-8820
    4.Abbas HF,Wan Daud MAW(2010)Hydrogen production by methane decomposition:a review.Int J Hydrog Energy35(3):1160-1190
    5.Holmen A(2009)Direct conversion of methane to fuels and chemicals.Catal Today 142(1-2):2-8
    6.Havran V,Dudukovic MP,Lo CS(2011)Conversion of methane and carbon dioxide to higher value products.Ind Eng Chem Res50(12):7089-7100
    7.Spivey JJ,Hutchings G(2014)Catalytic aromatization of methane.Chem Soc Rev 43(3):792-803
    8.Enger BC,L?deng R,Holmen A(2008)A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts.Appl Catal A 346(1-2):1-27
    9.Choudhary TV,Choudhary VR(2008)Energy-efficient syngas production through catalytic oxy-methane reforming reactions.Angew Chem Int Ed 47(10):1828-1847
    10.Korup O,Goldsmith CF,Weinberg G et al(2013)Catalytic partial oxidation of methane on platinum investigated by spatial reactor profi les,spatially resolved spectroscopy,and microkinetic modeling.J Catal 297:1-16
    11.Kondratenko VA,Berger-Karin C,Kondratenko EV(2014)Partial oxidation of methane to syngas overγ-Al 2 O 3-supported Rh nanoparticles:kinetic and mechanistic origins of size effect on selectivity and activity.ACS Catal 4(9):3136-3144
    12.Takenaka S,Umebayashi H,Tanabe E et al(2007)Specifi c performance of silica-coated Ni catalysts for the partial oxidation of methane to synthesis gas.J Catal 245(2):392-400
    13.Li L,He SC,Song YY et al(2012)Fine-tunable Ni@porous silica core-shell nanocatalysts:synthesis,characterization,and catalytic properties in partial oxidation of methane to syngas.JCatal 288(2):54-64
    14.Li ZH,Zhang LJ,Zhao KC et al(2018)Ni/ZrO 2 catalysts synthesized via urea combustion method for CO 2 methanation.Trans Tianjin Univ 24(5):471-479
    15.York APE,Xiao T,Green MLH(2003)Brief overview of the partial oxidation of methane to synthesis gas.Top Catal22(3-4):345-358
    16.Hu YH,Ruckenstein E(2004)Catalytic conversion of methane to synthesis gas by partial oxidation and CO 2 reforming.Adv Catal 35(49):297-345
    17.Wei A,Zeng XC,Turner CH(2009)First-principles study of methane dehydrogenation on a bimetallic Cu/Ni(111)surface.J Chem Phys 131(17):174702
    18.Liu H,Zhang R,Yan R(2011)CH 4 dissociation on NiCo(1 1 1)s u r fa c e:a f i r st-p r i n c i p l e s st u d y.A p p l S u r f S c i257(21):8955-8964
    19.Liu H,Zhang R,Yan R et al(2012)Insight into CH 4 dissociation on NiCu catalyst:a fi rst-principles study.Appl Surf Sci258(20):8177-8184
    20.Fan C,Zhu YA,Xu Y et al(2012)Origin of synergistic effect over Ni-based bimetallic surfaces:a density functional theory study.JChem Phys 137(1):014703
    21.Li K,Jiao MG,Wang Y et al(2013)CH 4 dissociation on NiM(111)(M=Co,Rh,Ir)surface:a fi rst-principles study.Surf Sci 617:149-155
    22.Li K,Zhou ZJ,Wang Y et al(2013)A theoretical study of CH 4dissociation on NiPd(111)surface.Surf Sci 612(3):63-68
    23.Shen X,Li Y,Liu X et al(2017)Hydrogen diffusion into the subsurfaces of model metal catalysts from fi rst principles.Phys Chem Chem Phys 19(5):3557-3564
    24.Bothra P,Pati SK(2014)Improved catalytic activity of rhodium monolayer modifi ed nickel(110)surface for the methane dehydrogenation reaction:a fi rst-principles study.Nanoscale6(12):6738-6744
    25.Qi Q,Wang X,Chen L et al(2013)Methane dissociation on Pt(111),Ir(111)and PtIr(111)surface:a density functional theory study.Appl Surf Sci 284:784-791
    26.Li J,Croiset E,Ricardez-Sandoval L(2012)Methane dissociation on Ni(100),Ni(111),and Ni(553):a comparative density functional theory study.J Mol Catal A Chem 365(4):103-114
    27.Li K,He C,Jiao M et al(2014)A fi rst-principles study on the role of hydrogen in early stage of graphene growth during the CH 4 dissociation on Cu(111)and Ni(111)surfaces.Carbon74(10):255-265
    28.Nave S,Jackson B(2009)Methane dissociation on Ni(111)and Pt(111):energetic and dynamical studies.J Chem Phys130(5):054701
    29.Weng XF,Ren HJ,Chen MS et al(2014)Effect of surface oxygen on the activation of methane on palladium and platinum surfaces.ACS Catal 4(8):2598-2604
    30.Chin YH,Buda C,Neurock M et al(2011)Selectivity of chemisorbed oxygen in C-H bond activation and CO oxidation and kinetic consequences for CH 4-O 2 catalysis on Pt and Rh clusters.J Catal 283(1):10-24
    31.Chin YH,Buda C,Neurock M et al(2011)Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH 4-O 2 catalysis on supported Pt clusters.J Am Chem Soc133(40):15958-15978
    32.Zhang M,Yang K,Zhang X et al(2014)Effect of Ni(111)surface alloying by Pt on partial oxidation of methane to syngas:a DFTstudy.Surf Sci 630(6):236-243
    33.Quinlan MA,Wood BJ,Wise H(1985)Detection of surface intermediates in the oxidation of methane on Ni(100)by electron energy loss spectroscopy.Chem Phys Lett 118(5):478-480
    34.Krishnan G,Wise H(1989)Interaction of methane and carbon monoxide with oxygen adspecies on Ni(111).Appl Surf Sci37(2):244-249
    35.Alstrup I,ChorkendorffI,Ullmann S(1992)The interaction of CH 4 at high temperatures with clean and oxygen precovered Cu(100).Surf Sci 264(1-2):95-102
    36.Valden M,Xiang N,Pere J et al(1996)Dissociative chemisorption of methane on clean and oxygen precovered Pt(111).Appl Surf Sci 99(2):83-89
    37.Au CT,Ng CF,Liao MS(1999)Methane dissociation and syngas formation on Ru,Os,Rh,Ir,Pd,Pt,Cu,Ag,and Au:a theoretical study.J Catal 185(1):12-22
    38.Xing B,Pang XY,Wang GC(2011)C-H bond activation of methane on clean and oxygen pre-covered metals:a systematic theoretical study.J Catal 282(1):74-82
    39.Xing B,Wang GC(2014)Insight into the general rule for the activation of the X-H bonds(X=C,N,O,S)induced by chemisorbed oxygen atoms.Phys Chem Chem Phys 16(6):2621-2629
    40.Yoo JS,Khan TS,Abildpedersen F et al(2015)On the role of the surface oxygen species during A-H(A=C,N,O)bond activation:a density functional theory study.Chem Commun51(13):2621-2624
    41.Watwe RM,Bengaard HS,Rostrup-Nielsen JR et al(2000)Theoretical studies of stability and reactivity of CH x species on Ni(111).J Catal 189(1):16-30
    42.Michaelides A,Hu PA(2000)First principles study of CH 3 dehydrogenation on Ni(111).J Chem Phys 112(18):8120-8125
    43.Mueller JE,van Duin ACT,Goddard WA III(2009)Structures,energetics,and reaction barriers for CH x bound to the nickel(111)surface.J Phys Chem C 113(47):20290-20306
    44.Che F,Zhang R,Hensley AJ et al(2014)Density functional theory studies of methyl dissociation on a Ni(111)surface in the presence of an external electric fi eld.Phys Chem Chem Phys16(6):2399-2410
    45.Delley B(1990)An all-electron numerical method for solving the local density functional for polyatomic molecules.J Chem Phys92:508
    46.Delley B(2000)From molecules to solids with the DMol 3approach.J Chem Phys 113:7756-7764
    47.Hammer B,Hansen LB,Norskov JK(1999)Improved adsorption energetics within density-functional theory using revised PerdewBurke-Ernzerhof functionals.Phys Rev B 59(11):7413-7421
    48.Inada Y,Orita H(2008)Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes:evidence of small basis set superposition error compared to Gaussian basis sets.J Comput Chem 29(2):225-232
    49.Monkhorst HJ,Pack JD(1976)Special points for Brillouin-zone integrations.Phys Rev B 13(12):5188-5192
    50.Halgren TA,Lipscomb WN(1977)The synchronous-transit method for determining reaction pathways and locating molecular transition states.Chem Phys Lett 49(2):225-232
    51.Yamagishi S,Jenkins SJ,King DA(2003)First principles studies of chemisorbed O on Ni(111).Surf Sci 543(1):12-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700