藏南车穷卓布锑矿S、Pb同位素对成矿物质来源的指示
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:S-Pb isotope constrains for origin of ore-forming material in Cheqiongzhuobu antimony deposit in southern Tibet
  • 作者:邓舟 ; 张刚阳 ; 郑有业 ; 陈友良
  • 英文作者:DENG Zhou;ZHANG Gangyang;ZHENG Youye;CHEN Youliang;College of Earth Sciences, Chengdu University of Technology;Tibet Huayu Mining Co., Ltd.;Faculty of Earth Resources, China University of Geosciences;
  • 关键词:车穷卓布锑矿床 ; 成矿物质来源 ; 硫铅同位素
  • 英文关键词:Cheqiongzhuobu antimony deposit;;origin of ore-forming material;;S-Pb isotope
  • 中文刊名:HEFE
  • 英文刊名:Journal of Hefei University of Technology(Natural Science)
  • 机构:成都理工大学地球科学学院;西藏华钰矿业股份有限公司;中国地质大学(武汉)资源学院;
  • 出版日期:2019-03-28
  • 出版单位:合肥工业大学学报(自然科学版)
  • 年:2019
  • 期:v.42;No.311
  • 基金:国家重点研发计划资助项目(2017YFC0601505);; 国家自然科学基金资助项目(41302066);; 西藏华钰矿业股份有限公司博士后基金资助项目(80303-SHX070);; 成都理工大学中青年骨干教师培养计划资助项目(KYGG201402);; 国土资源部构造成矿成藏重点实验室开放基金资助项目(GZCK2012002);; “构造成矿学理论发展与实践”四川省省属高校科研创新团队资助项目(13TD0008)
  • 语种:中文;
  • 页:HEFE201903007
  • 页数:9
  • CN:03
  • ISSN:34-1083/N
  • 分类号:55-63
摘要
车穷卓布锑矿床位于藏南金锑成矿带东南部,矿体赋存于下侏罗统日当组地层中,钙质板岩是其主要的围岩。矿体严格受近南北向断裂控制,呈脉状、透镜状产出。矿石硫化物硫同位素δ~(34)S_(V-CDT)值在-1.70‰~0.90‰之间,平均值为0.30‰,与岩浆硫同位素特征相似。矿石硫化物铅同位素~(206)Pb/~(204)Pb变化范围为18.970~19.134,平均值为19.051;其~(207)Pb/~(204)Pb变化范围为15.689~15.709,平均值为15.707;其~(208)Pb/~(204)Pb变化范围为39.342~39.441,平均值为39.402。铅同位素具有上地壳来源的特征,与变质结晶岩系相似,指示变质结晶岩系及与之相关的淡色花岗岩与锑成矿作用密切相关。
        The Cheqiongzhuobu antimony deposit is located in the southeast of the Au-Sb metallogenic belt in southern Tibet. The ore body is hosted in the Lower Jurassic Ridang Formation, and calcareous slate is the major host rock. The ore bodies are lenticular, vein, and controlled by S-N trending faults. The sulfur isotopes of ore sulfides δ~(34)S_(V-CDT) range from-1.70‰ to 0.90‰, with an average of 0.30‰, which is similar with the characteristics of sulfur isotope of magma. ~(206)Pb/~(204)Pb isotope compositions of sulfides range from 18.970 to 19.134, with an average of 19.051. ~(207)Pb/~(204)Pb isotope compositions of sulfides range from 15.689 to 15.709, with an average of 15.707. ~(208)Pb/~(204)Pb isotope compositions of sulfides range from 39.342 to 39.441, with an average of 39.402. Pb isotope indicates that ore material is derived from the upper crust, and has similar characteristics with metamorphic crystalline rock series, suggesting that the metamorphic crystalline rock and associated leucogranites in southern Tibet are closely related to Sb mineralization.
引文
[1] HOU Z Q,GAO Y F,QU X M,et al.Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J].Earth and Planetary Science Letters,2004,220(1/2):139-155.
    [2] HOU Z Q,COOK N J.Metallogenesis of the Tibetan collisional orogen:a review and introduction to the special issue[J].Ore Geology Reviews,2009,36(1):2-24.
    [3] 郑有业,范文玉,张晓保,等.西藏江孜—隆子金、锑多金属成矿带资源调查评价地质报告[R].拉萨:西藏自治区地质调查院,2003.
    [4] 郑有业,刘敏院,孙祥,等.西藏扎西康锑多金属矿床类型、发现过程及意义[J].地球科学:中国地质大学学报,2012,37(5):1003-1014.
    [5] 李金高,王全海,陈健坤,等.西藏江孜县沙拉岗锑矿床成矿与找矿模式的初步研究[J].成都理工大学学报(自然科学版),2002,29(5):533-538.
    [6] 聂凤军,胡朋,江思宏,等.藏南地区金和锑矿床(点)类型及其时空分布特征[J].地质学报,2005,79(3):373-385.
    [7] 侯增谦,潘桂棠,王安建,等.青藏高原碰撞造山带:Ⅱ 晚碰撞转换成矿作用[J].矿床地质,2006,25(5):521-543.
    [8] 戚学祥,李天福,孟祥金,等.藏南特提斯喜马拉雅前陆断褶带新生代构造演化与锑金多金属成矿作用[J].岩石学报,2008,24(7):1638-1648.
    [9] YANG Z S,HOU Z Q,MENG X J,et al.Post-collisional Sb and Au mineralization related to the South Tibetan detachment system,Himalayan orogen[J].Ore Geology Reviews,2009,36(1):194-212.
    [10] DUAN J L,TANG J X,LIN B.Zinc and lead isotope signatures of the Zhaxikang Pb-Zn deposit,South Tibet:implications for the source of the ore-forming metals[J].Ore Geology Reviews,2016,78(1):58-68.
    [11] SUN X M,WEI H X,ZHAI W,et al.Ore-forming fluid geochemistry and metallogenic mechanism of Bangbu large-scale orogenic gold deposit in southern Tibet,China[J].Acta Petrologica Sinica,2010,26(6):1672-1684.
    [12] 郑有业,赵永鑫,王苹,等.藏南金锑成矿带成矿规律研究及找矿取得重大进展[J].地球科学:中国地质大学学报,2004,29(1):44-68.
    [13] SUN X,ZHENG Y Y,PIRAJNO F,et al.Geology,S-Pb isotopes,and 40Ar/39Ar geochronology of the Zhaxikang Sb-Pb-Zn-Ag deposit in Southern Tibet:implications for multiple mineralization events at Zhaxikang[J].Mineralium Deposita,2017,53(3):435-458.
    [14] ZHOU Q,LI W C,QING C S,et al.Origin and tectonic implications of the Zhaxikang Pb-Zn-Sb-Ag deposit in northern Himalaya:evidence from structures,Re-Os-Pb-S isotopes,and fluid inclusions[J].Mineralium Deposita,2017,52(6):1-16.
    [15] 张刚阳.藏南金锑成矿带成矿模式与找矿前景研究[D].武汉:中国地质大学,2012.
    [16] 范文玉,朱华平,高建华,等.西藏车穷卓布锑矿床特征及成因探讨[J].矿床地质,2012,31(增刊1):1019-1020.
    [17] 李飞,刘国生,周庆卫,等.分形理论在断裂与矿产关系研究中的应用[J].合肥工业大学学报(自然科学版),2016,39(5):701-706.
    [18] 高利峨,曾令森,刘静,等,藏南也拉香波早渐新世富钠过铝质淡色花岗岩的成因机制及其构造动力学意义[J].岩石学报,2009,25(9):2297-2299.
    [19] 吴福元,刘志超,刘小池,等.喜马拉雅淡色花岗岩[J].岩石学报,2015,31(1):3-5.
    [20] HARRISON T M,MCKEEGAN K D,LE FORT P.Detection of inherited monazite in the Manaslu leucogranite by 208Pb/232Th ion microprobe dating:crystallization age and tectonic implications[J].Earth and Planetary Science Letters,1995,133(3):271-282.
    [21] BURCHFIEL B C,CHEN Z L,HODGES K V,et al.The South Tibetan detachment system,Himalayan Orogen:extension contemporaneous with and parallel to shortening in a collisional mountain belt[J].Geological Society of Amenica Special Paper,1992,269(21):1-41.
    [22] 张进江,丁林.青藏高原东西向伸展及其地质意义[J].地质科学,2003,38(2):179-189.
    [23] ZHU D C,CHUNG S L,MO X X,et al.The 132 Ma Comei-Bunbury large igneous province:remnants identified in present-day southeastern Tibet and southwestern Australia[J].Geology,2009,37(7):583-586.
    [24] LIU Z,ZHOU Q,YANG L,et al.Petrogenesis of the Early Cretaceous Laguila bimodal intrusive rocks from the Tethyan Himalaya:implications for the break-up of Eastern Gondwana[J].Lithos,2015,236/237:190-202.
    [25] 贾云伟,张科,王志,等.西藏自治区措美县车穷卓布矿区金多金属矿详查报告[R].拉萨:西藏天诚矿业有限公司,2015.
    [26] 江思宏,聂凤军,胡朋,等.藏南基性岩墙群的地球化学特征[J].地质学报,2007,81(1):62-73.
    [27] 童劲松,刘俊,钟华明,等.藏南洛扎地区基性岩墙群锆石U-Pb定年、地球化学特征及构造意义[J].地质通报,2007,26(12):1654-1664.
    [28] 杜泽忠,顾雪祥,李关清,等.藏南拉木由塔锑(金)矿床S、Pb同位素组成及指示意义[J].现代地质,2011,25(5):853-860.
    [29] 杨竹森,侯增谦,高伟,等.藏南拆离系锑金成矿特征与成因模式[J].地质学报,2006,80(9):1377-1391.
    [30] 郑有业,多吉,马国桃,等.藏南查拉普岩金矿床特征、发现及时代约束[J].地球科学:中国地质大学学报,2007,32(2):185-193.
    [31] 张建芳,郑有业,张刚阳,等.北喜马拉雅扎西康铅锌锑银矿床成因的多元同位素制约[J].地球科学:中国地质大学学报,2010,35(6):1000-1010.
    [32] 缪华清,李光明,张志,等.藏南柯月铅锌矿床成矿物质来源:来自硫、铅同位素的证据[J].沉积与特提斯地质,2017,37(2):14-22.
    [33] 李金高.西藏中南部中生代大陆边缘复合式Sedex型锑、铜矿床研究[D].成都:成都理工大学,2000.
    [34] OHMOTO H.Systematics of sulfur and carbon isotopes in hydrothemal ore deposits[J].Economic Geology,1972,67(5):551-578.
    [35] 曲晓明,李佑国.S、Pb同位素对冈底斯斑岩铜矿带成矿物质来源和造山带物质循环的指示[J].地质通报,2002,21(11):768-776.
    [36] 朱炳泉.地球科学中同位素体系理论与应用:兼论中国大陆壳幔演化[M].北京:科学出版社,1998:216-235.
    [37] ZARTMAN R E,DOE B R.Plumbotectonics:the model[J].Tectonophysics,1981,75(1):135-162.
    [38] ZHAO Z D,MO X X,DILEK Y,et al.Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet:petrogenesis and implications for India intra-continental subduction beneath southern Tibet[J].Lithos,2009,113(1/2):190-212.
    [39] VIDAL P,COCHERIE A,LE FORT P.Geochemical investigations of the origin of the Manaslu leucogranite (Himalaya,Nepal)[J].Geochimica et Cosmochimica Acta,1982,46(11):2279-2292.
    [40] GARIEPY C,ALLEGRE C J,XU R H.The Pb-isotope geochemistry of granitoids from the Himalaya-Tibet collision zone:implications for crustal evolution[J].Earth and Planetary Science Letters,1985,74(2):220-234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700