动态骨骼肌超声图像处理研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress of Dynamic Musculoskeletal Ultrasound Image Processing
  • 作者:汪灵梦 ; 赵万明 ; 邢运成 ; 孙通 ; 陈昕
  • 英文作者:WANG Lingmeng;ZHAO Wanming;XING Yuncheng;SUN Tong;CHEN Xin;School of Biomedical Engineering, Shenzhen University;National-Regional Key Technology Engineering Laboratory for Medical Ultrasound;Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging;
  • 关键词:骨骼肌 ; 超声成像 ; 图像处理
  • 英文关键词:musculoskeletal;;ultrasonography;;image processing
  • 中文刊名:ZYLZ
  • 英文刊名:Chinese Journal of Medical Instrumentation
  • 机构:深圳大学生物医学工程学院;医学超声关键技术国家地方联合工程实验室;广东省医学信息检测与超声成像重点实验室;
  • 出版日期:2019-01-30
  • 出版单位:中国医疗器械杂志
  • 年:2019
  • 期:v.43
  • 基金:国家重点研发计划项目(2016YFC0104700);; 国家自然科学基金(81000637)
  • 语种:中文;
  • 页:ZYLZ201901010
  • 页数:5
  • CN:01
  • ISSN:31-1319/R
  • 分类号:36-40
摘要
肌肉是构成人体的重要组织,它密布在各组织器官和骨骼周围。骨骼肌在人的生命活动中扮演着重要角色,其功能变化与自身形态结构密切相关。研究骨骼肌结构和功能的关系能深入理解力的生理学产生基础和指导临床实践。超声成像具有实时、快速、无辐射、价格低廉等优势,被广泛应用于人体肌肉特性研究。近年来关于骨骼肌超声图像,尤其是对动态骨骼肌超声图像处理的研究层出不穷。该文主要对现有动态骨骼肌超声图像处理方法及其关键步骤进行简要综述。
        Muscle is one of the most important tissues of human body, which is distributed around various organs and bones. Skeletal muscle plays an important role in human activities and its functional changes are closely related to its own morphological structure. The study of the relationship between musculoskeletal structure and function can help us to understand the physiology basics of force and to guide clinical practices. Ultrasonography has been widely used in the research of muscle properties since it is real-time, fast, nonradiative and inexpensive. In recent years, there emerges various researches on image processing method for musculoskeletal ultrasonography, especially for dynamic ultrasonography. This paper presents a brief overview of the existing methods and key steps of ultrasound image processing of musculoskeletal.
引文
[1]LIEBER R L,FRIDEN J.Functional and clinical significance of skeletal muscle architecture[J].Muscle Nerve,2000,23(11):1647-1666.
    [2]ZHOU Y J,YANG X J,YANG W Z,et al.Recent progress in automatic processing of skeletal muscle morphology using ultrasound:A brief review[J].Curr Med Imaging Rev,2018,14(2):179-185.
    [3]CRONIN N J,CARTY C P,BARRETT R S,et al.Automatic tracking of medial gastrocnemius fascicle length during human locomotion[J].J Appl Physiol,2011,111(5):1491-1496.
    [4]ZHOU Y J,ZHENG Y P.Estimation of muscle fiber orientation in ultrasound images using revoting hough transform(RVHT)[J].Ultrasound Med Biol,2008,34(9):1474-1481.
    [5]ZHOU Y J,LI J Z,ZHOU G Q,et al.Dynamic measurement of pennation angle of gastrocnemius muscles during contractions based on ultrasound imaging[J].Biomed Eng Online,2012,11(1):1-10.
    [6]LING S,CHEN B,ZHOU Y J,et al.An efficient framework for estimation of muscle fiber orientation using ultrasonography[J].Biomed Eng Online,2013,12(1):1-17.
    [7]RANA M,HAMARNEH G,WAKELING J M.Automated tracking of muscle fascicle orientation in B-mode ultrasound images[J].JBiomech,2009,42(13):2068-2073.
    [8]ZHAO H,ZHANG L Q.Automatic tracking of muscle fascicles in ultrasound images using localized Radon transform[J].IEEE Trans Biomed Eng,2011,58(7):2094-2101.
    [9]温慧莹,杨晓娟,郭燕荣,等.基于局部Radon变换和卡尔曼滤波的超声图像肌束方向自动跟踪方法[J].中国生物医学工程学报,2016,35(2):141-147.
    [10]LI Q L,LI Z Y,ZHANG H S,et al.Automatic tracking of muscle fascicle orientation in ultrasound images:an approach based on a normalized Radon transform and statistical measure[J].J Biomed Eng,2013,41(1):29-32.
    [11]CHEN X,LI Q L,QI S W,et al.Continuous fascicle orientation measurement of medial gastrocnemius muscle in ultrasonography using frequency domain Radon transform[J].Biomed Sign Proc Control,2015,20:117-124.
    [12]LORAM I D,MAGANARIS C N,LAKIE M.Use of ultrasound to make noninvasive in vivo measurement of continuous changes in human muscle contractile length[J].J Appl Phys,2006,100(4):1311-1323.
    [13]JOHN D,HODSON-TOLE E F,NICHOLAS C,et al.Automated regional analysis of B-mode ultrasound images of skeletal muscle movement[J].J Appl Phys,2012,112(2):313-327.
    [14]CHUANG B I,HSU J H,KUO L C,et al.Tendon-motion tracking in an ultrasound image sequence using optical-flow-based block matching[J].Biomed Eng Online,2017,16(1):47-65.
    [15]CRONIN N J,CARTY C P,BARRETT R S,et al.Automatic tracking of medial gastrocnemius fascicle length during human locomotion[J].J Appl Physiol,2011,111(5):1491-1496.
    [16]FARRIS D J,LICHTWARK G A.UltraTrack:Software for semiautomated tracking of muscle fascicles in sequences of B-mode ultrasound images[J].Comput Meth Prog Biomed,2016,128:111-118.
    [17]ZHOU G Q,CHAN P,ZHENG Y P.Automatic measurement of pennation angle and fascicle length of gastrocnemius muscles using real-time ultrasound imaging[J].Ultrasonics,2015,57:72-83.
    [18]ZHOU G Q,ZHENG Y P.Automatic fascicle length estimation on muscle ultrasound images with an orientation-sensitive segmentation[J].IEEE Trans Biomed Eng,2015,62(12):2828-2836.
    [19]CARESIO C,SALVI M,MOLINARI F,et al.Fully automated muscle ultrasound analysis(MUSA):robust and accurate muscle thickness measurement[J].Ultrasound Med Biol,2017,43(1):195-205.
    [20]SHI J,ZHENG Y P,CHEN X,et al.Assessment of muscle fatigue using sonomyography:muscle thickness change detected from ultrasound images[J].Med Eng Phys,2007,29(4):472-479.
    [21]SHI J,ZHENG Y P,HUANG Q H,et al.Continuous monitoring of sonomyography electromyography and torque generated by normal upper arm muscles during isometric contraction:sonomyography assessment for arm muscles[J].IEEE Trans Biomed Eng,2008,55(3):1191-1198.
    [22]LI J Z,ZHOU Y J,YI L,et al.The sensitive and efficient detection of quadriceps muscle thickness changes in cross-sectional plane using ultrasonography:a feasibility investigation[J].J Appl Biomater,2014,18(2):628-635.
    [23]LI Q L,REN P P,ZHANG H S,et al.Automatic detection of muscle thickness from ultrasound images:a novel approach based on optical flow[J].J Biomed Eng,2013,32(2):149-153.
    [24]LI Q L,QI S W,ZHANG H S,et al.Continuous thickness measurement of rectus femoris muscle in ultrasound image sequences:A completely automated approach[J].Biomed Sign Proc Control,2013,8(6):792-798.
    [25]PAN H,YE C,AO L,et al.Automatic thickness estimation for skeletal muscle in ultrasonography:evaluation of two enhancement methods[J].Biomed Eng Online,2013,12(1):6.
    [26]LI W,LI C M,SUN Q S.Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation[J].Comput Med Imag Grap,2009,33(7):520-531.
    [27]PAN Q Y,CHEN Z H,WANG Q,et al.Automatic extraction of the pennation angle of the gastrocnemius muscles from ultrasound radiofrequency signals[J].J South Med Univ,2015,35(8):1116-1121.
    [28]CUNNINGHAM R,HARDING P,LORAM I.Deep residual networks for quantification of muscle fiber orientation and curvature from ultrasound images.medical image understanding and analysis[M].Germany:Springer International Publishing,2017.
    [29]MOURTZAKIS M,PARRY S,CONNOLLY B,et al.Skeletal muscle ultrasound in critical care:a tool in need of translation[J].Ann Entomol Soc Am,2017,14(10):1495-1503.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700