碳纤维布载三维网状聚苯胺在RCl(R=H,Li,Na,K)水溶液中的电容性能对比
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Capacitive Performance Comparison of Carbon Fiber Cloth Supported Three-Dimensional Polyaniline Networks in RCl (R = H,Li,Na,K) Aqueous Solution
  • 作者:高山 ; 孙海军 ; 杜孟孟 ; 郭芬 ; 叶小利 ; 乔磊
  • 英文作者:GAO Shan;SUN Haijun;DU Mengmeng;GUO Fen;YE Xiaoli;QIAO Lei;Wuhan Second Ship Design and Research Institute;Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials,School of Chemistry and Chemical Engineering,Wuhan University of Science and Technology;
  • 关键词:电势窗口 ; 能量密度 ; 电容器 ; 聚苯胺 ; 碱金属盐
  • 英文关键词:potential window;;energy density;;capacitor;;polyaniline;;alkaline metal salt
  • 中文刊名:YYHX
  • 英文刊名:Chinese Journal of Applied Chemistry
  • 机构:武汉第二船舶设计研究所;武汉科技大学化学与化工学院煤转化与新型炭材料湖北省重点实验室;
  • 出版日期:2019-02-10
  • 出版单位:应用化学
  • 年:2019
  • 期:v.36
  • 基金:湖北省自然科学基金(2018CFB214);; 武汉科技大学校青年科技骨干培育计划(2017xz011)项目资助~~
  • 语种:中文;
  • 页:YYHX201902031
  • 页数:9
  • CN:02
  • ISSN:22-1128/O6
  • 分类号:121-129
摘要
通过电化学聚合法制备了碳纤维布载三维网状聚苯胺电极,采用扫描电子显微镜、傅里叶红外光谱仪和X射线光电子能谱仪观察了电极形貌,并分析了电极表面特征基团。接着,对比研究了该电极在4种RCl(R=H,Li,Na,K)水溶液中的电容性能。电化学测试表明,在KCl中的电势窗口(1. 8 V)大于在HCl和Li Cl中的电势窗口,且在KCl中的比电容(501 F/g@0. 5 A/g)远远大于Na Cl中的比电容;即使在10 A/g的充放电电流下,电极在KCl溶液中的能量密度仍高于HCl溶液中2. 0 A/g下的能量密度,因此KCl为聚苯胺基电容器最佳的电解质类型。本文通过简单地改变水系溶液中电解质的种类,即可达到拓宽电势窗口、显著提升电化学电容器能量密度的目的,避免了使用有机溶液带来的物理化学稳定性差、污染环境的问题。
        Carbon fiber cloth supported three-dimensional polyaniline networks were synthesized by electrochemical polymerization. Scanning electron microscopy,Fourier transform infrared spectroscopy and X-ray photoelectron spectrometer were applied to characterize the morphology of the electrode and analyze the characteristic groups on the electrode surface. The capacitive performance of the as-prepared electrode in four RCl( R = H,Li,Na,K) aqueous solutions was systematically compared. The electrochemical tests show that KCl electrolyte gives a wider potential window( 1. 8 V) than the HCl or LiC l electrolyte,and also exhibits a superior specific capacitance( 501 F/g @ 0. 5 A/g) to the NaCl electrolyte. The energy density under the current density of 10 A/g in the KCl electrolyte is even larger than that in the HCl electrolyte under 2. 0 A/g.As a result,KCl is the most suitable electrolyte for the polyaniline-based capacitor. The potential window is widened and the energy density of electrochemical capacitor is remarkably improved just simply by altering the electrolyte in the aqueous solution,which avoids the issues of poor physico-chemical stability and severe environment contamination originated from the organic solutions.
引文
[1]Caldona E B,Al Christopher C,Pajarito B B,et al.Novel Anti-Corrosion Coatings from Rubber-Modified PolybenzoxazineBased Polyaniline Composites[J].Appl Surf Sci,2017,422:162-171.
    [2]Hong J,Han X,Shi H,et al.Preparation of Conductive Silk Fibroin Yarns Coated with Polyaniline Using an Improved Method Based on in situ Polymerization[J].Synth Met,2018,235:89-96.
    [3]Eising M,Cava C E,Salvatierra R V,et al.Doping Effect on Self-Assembled Films of Polyaniline and Carbon Nanotube Applied as Ammonia Gas Sensor[J].Sens Actuators B:Chem,2017,245:25-33.
    [4]Dimitriev O P.Doping of Polyaniline by Transition-Metal Salts[J].Macromolecules,2004,37(9):3388-3395.
    [5]Ryu K S,Kim K M,Kang S G,et al.Electrochemical and Physical Characterization of Lithium Ionic Salt Doped Polyaniline as a Polymer Electrode of Lithium Secondary Battery[J].Synth Met,2000,110(3):213-217.
    [6]ZHANG Aiqin,WANG Lizhen,ZHANG Yong,et al.Electrochemical Properties of Activated Carbon-Polyaniline Hybrid Capacitor[J].Chinese Battery Ind,2010,15(1):18-21(in Chinese).张爱勤,王力臻,张勇,等.活性炭-聚苯胺混合电容器的电化学性能[J].电池工业,2010,15(1):18-21.
    [7]Gupta V,Miura N.Large-Area Network of Polyaniline Nanowires Prepared by Potentiostatic Deposition Process[J].Electrochem Commun,2005,7(10):995-999.
    [8]MA Li,FENG Lijun,GAN Mengyu,et al.Synthesis and Properties of Conducting Polyaniline Doped with Multiple Sulfonic Acid[J].Chinese J Appl Chem,2008,25(2):142-146(in Chinese).马利,冯利军,甘孟瑜,等.复合酸掺杂导电聚苯胺的合成及性能[J].应用化学,2008,25(2):142-146.
    [9]Guo F,Ye K,Huang X,et al.Palladium Dispersed in Three-Dimensional Polyaniline Networks as the Catalyst for Hydrogen Peroxide Electro-Reduction in an Acidic Medium[J].RSC Adv,2015,5(114):94008-94015.
    [10]XU Hui,XU Yao,CHEN Yong.The Adsorption of Trace Cr(Ⅵ)in Aqueous Solution by Polyaniline/Attapulgite Nanofiber Composite[J].Chinese J Appl Chem,2011,28(5):549-554(in Chinese).徐惠,徐垚,陈泳.聚苯胺/凹凸棒石纳米纤维复合材料对溶液中痕量Cr(Ⅵ)的吸附性能[J].应用化学,2011,28(5):549-554.
    [11]Gao Z,Yang W,Wang J,et al.Electrochemical Synthesis of Layer-by-Layer Reduced Graphene Oxide Sheets/Polyaniline Nanofibers Composite and Its Electrochemical Performance[J].Electrochim Acta,2013,91:185-194.
    [12]WANG Hongzhi,GAO Cuixia,ZHANG Peng,et al.Synthesis and Electrochemical Performance of Graphene/Polyaniline[J].Acta Phys-Chim Sin,2013,29(1):117-122(in Chinese).王宏智,高翠侠,张鹏,等.石墨烯/聚苯胺复合材料的制备及其电化学性能[J].物理化学学报,2013,29(1):117-122.
    [13]Guo F,Li Y,Cao D,et al.A Double-Chamber Energy Storage Device with Dual Ionic Electrolyte Enabling High Energy Density[J].Electrochim Acta,2018,274:31-39.
    [14]Saprigin A,Brenneman K,Lee W,et al.Li+Doping-Induced Localization in Polyaniline[J].J Synth Met,1999,100(1):55-59.
    [15]LU Xiangjun,DOU Hui,YANG Sudong,et al.Fabrication and Electrochemical Capacitive Behavior of Freestanding Graphene/Polyaniline Nanofibre Film[J].Acta Phys-Chim Sin,2011,27(10):2333-2339(in Chinese).卢向军,窦辉,杨苏东,等.自支撑石墨烯/聚苯胺纳米纤维薄膜的制备及其电化学电容行为[J].物理化学学报,2011,27(10):2333-2339.
    [16]Mi H,Zhang X,Ye X,et al.Preparation and Enhanced Capacitance of Core-Shell Polypyrrole/Polyaniline Composite Electrode for Supercapacitors[J].J Power Sources,2008,176(1):403-409.
    [17]PrunǎA,Branzoi V,Branzoi F.Ordered Arrays of Copper Nanowires Enveloped in Polyaniline Nanotubes[J].J Appl Electrochem,2011,41(1):77-81.
    [18]Hong X,Zhang B,Murphy E,et al.Three-Dimensional Reduced Graphene Oxide/Polyaniline Nanocomposite Film Prepared by Diffusion Driven Layer-by-Layer Assembly for High-Performance Supercapacitors[J].J Power Sources,2017,343:60-66.
    [19]ZHANG Yue,WANG Guangjin,PAN Mu.Fast Electropolymerization of Polyaniline Nanofibers on Carbon Paper[J].Chem J Chinese Univ,2014,35(10):2234-2238(in Chinese).张悦,汪广进,潘牧.基于碳纸电极电化学快速合成聚苯胺纳米纤维[J].高等学校化学学报,2014,35(10):2234-2238.
    [20]REN Lijun,ZHANG Gaini,LEI Ji,et al.Prepartion of Polyaniline Nanowire Electrode Material with High Rate Performance for Supercapacitor[J].New Chem Mater,2017,45(1):56-58(in Chinese).任莉君,张改妮,雷霁,等.高倍率性能聚苯胺纳米线超级电容器电极材料的制备[J].化工新型材料,2017,45(1):56-58.
    [21]SHANG Xiuli,SUO Longning,FENG Wencheng,et al.Preparation of Polyaniline/Polysulfone Composite Material and Their Super-capacitive Performance[J].Chinese J Appl Chem,2013,30(9):1060-1064(in Chinese).尚秀丽,索陇宁,冯文成,等.聚苯胺/聚砜复合材料的制备及其超级电容性能[J].应用化学,2013,30(9):1060-1064.
    [22]Zhang X,Ji L,Zhang S,et al.Synthesis of a Novel Polyaniline-Intercalated Layered Manganese Oxide Nanocomposite as Electrode Material for Electrochemical Capacitor[J].J Power Sources,2007,173(2):1017-1023.
    [23]Fan W,Zhang C,Tjiu W,et al.Graphene-Wrapped Polyaniline Hollow Spheres as Novel Hybrid Electrode Materials for Supercapacitor Applications[J].ACS Appl Mater Interfaces,2017,5(8):3382-3391.
    [24]Bandyopadhyay P,Kuila T,Balamurugan J,et al.Facile Synthesis of Novel Sulfonated Polyaniline Functionalized Graphene Using m-Aminobenzene Sulfonic Acid for Asymmetric Supercapacitor Application[J].Chem Eng J,2017,308:1174-1184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700