磁流变脂在剪切模式下的流变特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Rheological Properties of Magnetorheological Grease Under Shear Mode
  • 作者:汪辉兴 ; 张广 ; 欧阳青 ; 王炅
  • 英文作者:WANG Huixing;ZHANG Guang;OUYANG Qing;WANG Jiong;School of Mechanical Engineering, Nanjing University of Science and Technology;
  • 关键词:磁流变脂 ; 本构关系 ; 大振幅振荡剪切 ; 屈服应力 ; 磁流变效应
  • 英文关键词:magnetorheological grease(MRG);;constitutive relation;;large amplitude oscillatory shear;;yield stress;;magnetorheological effect
  • 中文刊名:SHJT
  • 英文刊名:Journal of Shanghai Jiaotong University
  • 机构:南京理工大学机械工程学院;
  • 出版日期:2019-03-28
  • 出版单位:上海交通大学学报
  • 年:2019
  • 期:v.53;No.397
  • 基金:国家自然科学基金资助项目(51675280)
  • 语种:中文;
  • 页:SHJT201903019
  • 页数:7
  • CN:03
  • ISSN:31-1466/U
  • 分类号:132-138
摘要
磁流变脂材料无沉降、密封结构简单、制备容易,因而具有巨大工程应用前景,在剪切模式下的流变特性是磁流变脂缓冲器件设计和应用的基础.采用商业润滑脂为基体,制备了羟基铁粉质量分数分别为30%、50%和70%的磁流变脂.利用稳态剪切测试分析了不同铁粉质量分数的磁流变脂的黏度、剪切应力、屈服应力随剪切速率和磁场变化情况,结果表明:磁流变脂的本构关系可用Bingham模型进行描述,且在一定范围内,羟基铁粉质量分数越高,磁流变脂的黏度和剪切应力可调范围越广.以铁粉质量分数为70%的磁流变脂为例,运用大振幅振荡剪切的方法,确定线性黏弹性区间和非线性黏弹性区间的临界应变幅值为0.02%;计算该型磁流变脂在磁感应强度为0.96T时的屈服应力为24.7 kPa,磁致储能模量为1.17 MPa,相对磁流变效应高达3 814%.
        Magnetorheological grease(MRG) has wide application prospect in the field of engineering due to the distinguished advantages such as, no settlement, simple sealing and simple preparation. The rheological properties of MRG are the basis for the design of magnetorheological absorber. In this study, lubricating grease based MRG with 30%, 50% and 70% weight fraction of carbonyl iron(CI) were prepared. Rheological properties including shear viscosity and shear stress of MRG with different CI weight fraction were examined from steady shear with and without magnetic fields applied. It is found that the constitutive relation of MRG can be described by Bingham model, and the higher the weight fraction of CI particles is, the wider adjustable range of shear viscosity and shear stress of MRG can reach. The critical strain between linear viscoelastic range and nonlinear viscoelastic range of MRG with 70% CI weight fraction obtained by using the large amplitude oscillatory shear method is 0.02%. In addition, the yield stress is 24.7 kPa under the magnetic field of 0.96 T; the maximum magneto-induced storage modulus is 1.17 MPa; the relative magnetorheological effect reaches as high as 3 814%.
引文
[1] ALGHAMDI A A, LOSTADO R, OLABI A G. Magneto-rheological fluid technology[M]. 2en ed. Berlin: Springer, 2014: 43-62.
    [2] RANKIN P J, HORVATH A T, KLINGENBERG D J. Magnetorheology in viscoplastic media[J]. Rheologica Acta, 1999, 38(5): 471-477.
    [3] SAHIN H, WANG X, GORDANINEJAD F. Temperature dependence of magneto-rheological materials[J]. Journal of Intelligent Material Systems and Structures, 2009, 20(18): 2215-2222.
    [4] PARK J H, KWON M H, PARK O O. Rheological properties and stability of magnetorheological fluids using viscoelastic medium and nanoadditives[J]. Korean Journal of Chemical Engineering, 2001, 18(5): 580-585.
    [5] PARK B O, PARK B J, HATO M J, et al. Soft magnetic carbonyl iron microsphere dispersed in grease and its rheological characteristics under magnetic field[J]. Colloid and Polymer Science, 2011, 289(4): 381-386.
    [6] 何国田, 廖昌荣, 邓绍更, 等. 磁流变酯机理模拟研究[J]. 功能材料, 2011, 42(3): 550-552. HE Guotian, LIAO Changrong, DENG Shaogeng, et al. Mechanism simulation of magnetorheological grease[J]. Journal of Functional Materials, 2011, 42(3): 550-552.
    [7] 胡志德, 晏华, 王雪梅, 等. 稠化剂含量对磁流变脂流变行为的影响[J]. 功能材料, 2015, 46(2): 2105-2108. HU Zhide, YAN Hua, WANG Xuemei, et al. The effect of soap content on the rheology of mineral oil-based magnetorheological grease[J]. Journal of Functional Materials, 2015, 46(2): 2105-2108.
    [8] SHILAN S T, AMRI M S, IDO Y, et al. A compa-rison of field-dependent rheological properties between spherical and plate-like carbonyl iron particles-based magneto-rheological fluids[J]. Smart Material & Structures, 2016, 25(9): 095025.
    [9] ROMAN C, VALENCIA C, FRANCO J M. AFM and SEM assessment of lubricating grease microstructures: Influence of sample preparation protocol, frictional working conditions and composition[J]. Tribo-logy Letters, 2016, 63(2): 1-12.
    [10] ZHENG J, OUYANG Q, LI Z, et al. Experimental analysis of separately controlled multi coils on the performance of MR absorber under impact loading[J]. Journal of Intelligent Material Systems & Structures, 2016, 27(7): 887-897.
    [11] BOMBARD A J F, VICENTE J D. Thin-film rheology and tribology of magnetorheological fluids in isoviscous-EHL contacts[J]. Tribology Letters, 2012, 47(1): 149-162.
    [12] YIN Y, LIU C, WANG B, et al. The synthesis and properties of bifunctional and intelligent Fe3O4@titanium oxide core/shell nanoparticles.[J]. Dalton Transactions, 2013, 42(19): 7233-7240.
    [13] SUSAN R D, VéKáS L. Yield stress and flow behavior of concentrated ferrofluid-based magnetorheological fluids: The influence of composition[J]. Rheologica Acta, 2014, 53(8): 645-653.
    [14] GONG X, XU Y, XUAN S, et al. The investigation on the nonlinearity of plasticine-like magnetorheological material under oscillatory shear rheometry[J]. Journal of Rheology, 2012, 56(6): 1375-1391.
    [15] GUO F, LIN X G, YU G J. The Preparation and testing of rheological properties for single- and double-grading magnetorheological composite gels[J]. Key Engineering Materials, 2017, 730(28): 65-71.
    [16] SEGOVIAGUTIéRREZ J P, BERLI C L A, VICENTE J D. Nonlinear viscoelasticity and two-step yielding in magnetorheology: A colloidal gel approach to understand the effect of particle concentration[J]. Journal of Rheology, 2012, 56(6): 1429-1448.
    [17] MOHAMAD N, MAZLAN S A, CHOI S B, et al. The field-dependent rheological properties of magnetorheological grease based on carbonyl-iron-particles[J]. Smart Material Structures, 2016, 25(9): 095043.
    [18] MAZLAN S A, SUTRISNO J, ZAMZURI H. Potential applications of magnetorheological elastomers[J]. Applied Mechanics & Materials, 2014, 663(43): 12-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700