高侧压软岩巷道破坏机理及控制技术研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Failure Mechanism and Control Technology of Soft Rock Roadway with High Lateral Pressure
  • 作者:郭进平 ; 刘少青 ; 王小林
  • 英文作者:Guo Jinping;Liu Shaoqing;Wang Xiaolin;School of Resources Engineering,Xi'an University of Architecture and Technology;College of Civil and Resources Engineering,University of Science & Technology Beijing;
  • 关键词:高侧压 ; 软岩巷道 ; 破坏机理 ; 联合支护 ; 袋装充填圈
  • 英文关键词:High lateral pressure;;Soft rock roadway;;Failure mechanism;;Combined support;;Bag filling ring
  • 中文刊名:JSKS
  • 英文刊名:Metal Mine
  • 机构:西安建筑科技大学资源工程学院;北京科技大学土木与资源工程学院;
  • 出版日期:2019-06-15
  • 出版单位:金属矿山
  • 年:2019
  • 期:No.516
  • 语种:中文;
  • 页:JSKS201906017
  • 页数:5
  • CN:06
  • ISSN:34-1055/TD
  • 分类号:91-95
摘要
为揭示高侧压软岩巷道底鼓和侧鼓的机理,以陕西某铜矿为工程背景,从岩体性质、地应力分布、巷道形状和支护条件等方面进行了理论分析和FLAC3D数值分析。结果表明:巷道底鼓和侧鼓的根本原因是围岩软弱破碎和水平地压大,顶板矢跨比为0.33、底板矢跨比为0.2、侧帮矢跨比为0.09时对控制巷道变形最为有利;与直墙平底三心拱相比,马蹄形巷道顶板下沉量下降为6.8%,底鼓量下降为20.7%,侧鼓量下降为10.7%;与不耦合支护相比,耦合支护使巷道底鼓量降低34.1%,侧鼓量降低41.4%;与底板不支护相比,底板支护底鼓量降低20.4%,侧鼓量降低15.5%。在优化巷道形状的基础上,采用"喷锚网+全断面钢架+架后袋装充填圈"的联合支护方式,顶底板移近量为14.5 mm,两帮移近量为32 mm,能够保证巷道稳定。
        In order to reveal the mechanism of floor heave and side heave in soft rock roadway with high lateral pressure,theoretical analysis and FLAC3 D numerical analysis are carried out from the aspects of the nature of rock mass,in-situ stress distribution,roadway shape and support conditions,taking a copper mine in Shaanxi Province as an engineering background. The results show that the floor heave and side heave are basically caused by the weakly broken surrounding rock and high horizontal ground pressure. The best favorable conditions for controlling the deformation of surrounding rocks are the roof rise-span ratio at 0.33,floor rise-span ratio at 0.2,and sides rise-span ratio at 0.09. Compared with the straight-wall flat-bottom three-center arch,the roof subsidence of horseshoe-shaped roadway decreases by 6.8%,the floor heave decreases by20.7%,and the side heave decreases by 10.7%. Compared with uncoupled support,the coupling support reduces the floor heave by 34.1%,the side heave by 41.4%;Compared with the roadway without floor support,the roadway with floor support reduces the floor heave by 20.4% and the side heave by 15.5%. On the basis of optimizing the shape of the roadway,the combined support method of "shotcrete anchor net + full-section steel frame + bag filling ring behind support" is adopted with the roof-to-floor convergence at 14.5 mm,and the two-side convergence at 32 mm,which can ensure the stability of the roadway.
引文
[1]陈炎光,陆士良.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994.Chen Yanguang,Lu Shiliang.Surrounding Rock Control of Coal Mine Roadway in China[M].Xuzhou:China University of Mining and Technology Press,1994.
    [2]何满潮,张国锋,王桂莲,等.深部煤巷底臌控制机制及应用研究[J].岩石力学与工程学报,2009,28(1):2593-2598.He Manchao,Zhang Guofeng,Wang Guilian,et al.Research on mechanism and application to floor heave control of deep gateway[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(1):2593-2598.
    [3]杨本生,高斌,孙利辉,等.深井软岩巷道连续“双壳”治理底鼓机理与技术[J].采矿与安全工程学报,2014,31(4):587-592.Yang Bensheng,Gao Bin,Sun Lihui,et al.Study on technology and mechanism of continuous“double shell”harnessing floor heave in deep soft-engineering rock roadway[J].Journal of Mining&Safety Engineering,2014,31(4):587-592.
    [4]王晓卿,阚甲广,焦建康.高应力软岩巷道底鼓机理及控制实践[J].采矿与安全工程学报,2017,34(2):214-227.Wang Xiaoqing,Kan Jiaguang,Jiao Jiankang.Mechanism of floor heave in the roadway with high stress and soft rock and its control practice[J].Journal of Mining&Safety Engineering,2017,34(2):214-227.
    [5]丁自伟,邱华富.破碎围岩巷道新型注浆加固工艺实验研究[J].地下空间与工程学报,2016(4):958-962.Ding Ziwei,Qiu Huafu.Experimental research on new grouting reinforcement technology of roadways with fractured surrounding rock[J].Chinese Journal of Underground Space and Engineering,2016(4):958-962.
    [6]杜青炎,张东宝.风煤钻松帮卸压在采掘工作面巷道中的应用[J].煤炭技术,2009,28(4):73-74.Du Qingyan,Zhang Dongbao.Application of loosening roadway sides and pressure relief with wind-coal drill in roadway of excavation face[J].Coal Technology,2009,28(4):73-74.
    [7]刘长武,曹磊,刘树新.深埋非圆形地下洞室围岩应力解析分析的“当量半径”法[J].铜业工程,2010(1):1-5.Liu Changwu,Cao Lei,Liu Shuxing.Method of equivalent radius for the analyzing rock stress of high-buried non-circular underground chambers[J].Copper Engineering,2010(1):1-5.
    [8]杜建军,陈群策,安其美,等.陕西汉中盆地水压致裂地应力测量分析研究[J].地震学报,2013,35(6):799-808.Du Jianjun,Chen Qunce,An Qimei,et al.Hydrofracturing in-situ stress measurement in Hanzhong Basin,Shaanxi Province[J].Acta Seismologica Sinica,2013,35(6):799-808.
    [9]文江泉,韩会增.膨胀岩的判别与分类初探[J].铁道工程学报,1996,50(2):231-237.Wen Jiangquan,Han Huizeng.Preliminary study of distinguishing and classifying on swell rock[J].Journal of Railway Engineering society,1996,50(2):231-237.
    [10]李福让,王瑞廷,高晓宏,等.陕西省略阳县徐家沟铜矿床成矿地质特征及控矿因素[J].地质学报,2009,83(11):1752-1760.Li Furang,Wang Ruiting,Gao Xiaohong,et al.Geological characteristics and Controlling factors of the Xujiagou copper deposit in Lueyang county,Shaanxi Province,China[J].Acta Geologica Sinica,2009,83(11):1752-1760.
    [11]张倬元,王士天,王兰生,等.工程地质分析原理[M],北京:地质出版社,2009.Zhang Zuoyuan,Wang Shitian,Wang Lansheng,et al.Analyzing Principle of Engineering Geology[M].Beijing:Geological Publishing House,2009.
    [12]王小林.破碎矿体采场底部结构稳定性分析及控制技术研究[D].西安:西安建筑科技大学,2017.Wang Xiaolin.Research on Stability Analysis and Control Technology of Stope Bottom Structure in Broken Orebody[D].Xi'an:Xi'an University of Architecture and Technology,2017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700