高面质比航天器轨道运动受摄分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Researched on the motion of high area-to-mass ratio spacecraft by perturbation
  • 作者:和东生 ; 和兴锁 ; 宋明
  • 英文作者:HE Dong-sheng;HE Xing-suo;SONG Ming;Aerospace Long March Launch Vehicle Technology CO.,LTD.;School of Mechanics,Civil Engineering and Architecture,NWPU;Inner Mongolia Power Machinery Research Institute;
  • 关键词:面质比 ; 摄动 ; 地影
  • 英文关键词:area-to-mass ratio;;perturbations;;earth shadow
  • 中文刊名:FHLX
  • 英文刊名:Flight Dynamics
  • 机构:航天长征火箭技术有限公司;西北工业大学力学与土木建筑学院;内蒙古动力机械研究所;
  • 出版日期:2017-09-20 16:57
  • 出版单位:飞行力学
  • 年:2018
  • 期:v.36;No.159
  • 语种:中文;
  • 页:FHLX201801017
  • 页数:5
  • CN:01
  • ISSN:61-1172/V
  • 分类号:73-77
摘要
随着航天科技的发展,柔性材料、充气结构被广泛地应用于航天器,航天器的面质比也越来越大;同时,与面质比相关的摄动加速度大大增加,对航天器轨道运动产生较大扰动。通过分析摄动加速度的本构关系,研究了高面质比航天器摄动加速度的量级;结合高斯摄动理论和太阳光压、大气阻力等摄动模型,讨论和分析了高面质比航天器的轨道演化。建立的光压模型表现出较强的稳定性,可避免求解复杂的地影方程。研究结果表明,大气阻力、太阳光压等摄动均对高面质比航天器在轨运动产生了强烈的影响。
        With the development of aerospace science and technology,flexible materials and inflatable structure were widely used in spacecraft,and area-to-mass ratio of spacecraft became lager and lager.While some perturbations acceleration associated with area-to-mass ratio were also greatly increased,resulting in a greater disturbance to orbit. In this paper,the magnitude of major perturbations was studied by analyzing the constitutive equation of perturbation acceleration. And the orbital evolution of high areato-mass ratio spacecraft was analyzed based on the Gauss perturbation theory,the air drag and solar pressure model. The cylindrical shadow model established in this paper shows strong stability and can avoid solving complex earth shadow equation. Research results show that the influence of air drag and solar pressure is too large for high area-to-mass ratio spacecraft to be ignored.
引文
[1]Jenkins C H,Freeland R E,Bishop J A,et al.An up-todate review of inflatable structures technology for spacebased applications[C]∥Rodney G,Galloway,Lokaj S.Proceedings of the Sixth International Conference and Exposition on Engineering,Construction,and Operations in Space.Reston,VA:ASCE,1998:66-73.
    [2]郗晓宁,王威.近地航天器轨道基础[M].长沙:国防科技大学出版社,2003:124-152.
    [3]王翔.充气展开太空舱的发展历程[J].太空探索,2016(8):24-27.
    [4]刘莹莹,刘睿,周军.摄动力对绕飞小行星航天器轨道的影响[J].飞行力学,2008,26(3):44-48.
    [5]刘林.航天器轨道理论[M].北京:国防工业出版社,2000:252-305.
    [6]Aksnes K.Short-period and long-period perturbations of a spherical satellite due to direct solar radiation[J].Celestial Mechanics,1976,13(1):89-104.
    [7]Valk S,Lema5tre A.Semi-analytical investigations of high area-to-mass ratio geosynchronous space debris including Earth’s shadowing effects[J].Advances in Space Research,2008,42(8):1429-1443.
    [8]Hubaux C,Lema5tre A,Delsate N,et al.Symplectic integration of space debris motion considering several Earth’s shadowing models[J].Advances in Space Research,2012,49(10):1472-1486.
    [9]Hubaux C,Lema5tre A.The impact of earth’s shadow on the long-term evolution of space debris[J].Celestial Mechanics and Dynamical Astronomy,2013,116(1):79-95.
    [10]程昊文,汤靖师,刘静,等.大面质比空间碎片在太阳光压和引力作用下的轨道演化[J].空间科学学报,2013,33(2):182-187.
    [11]Prasad P R,Sonney A,Rao S S,et al.Review of air density models for orbit determination[J].Acta Astronautica,1995,36(4):197-204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700